Title page for 992202027


[Back to Results | New Search]

Student Number 992202027
Author Ya-yi Tsai()
Author's Email Address No Public.
Statistics This thesis had been viewed 380 times. Download 10 times.
Department Physics
Year 2011
Semester 2
Degree Master
Type of Document Master's Thesis
Language English
Title Multifractal Dynamics of Intermittent Dust Acoustic Wave Turbulence
Date of Defense 2012-04-26
Page Count 57
Keyword
  • dust acoustic wave
  • dusty plasma
  • multifractal
  • wave turbulence
  • Abstract Dusty plasma system composed of negatively charged micrometer sized dust particles in a low pressure laboratory discharge background is a nonlinear open dissipative system. The nonlinear dust acoustic wave with longitudinal dust oscillations can be self-excited by the free streaming energy of the vertical ion flow through the interplay of dust inertial and screened electric field. In this thesis, the direct observation of the transition from the coherent dust acoustic wave to the dust acoustic wave turbulence through optical video microscopy by decreasing neutral pressure is demonstrated. The mutlifractal scaling behaviors of the turbulent dynamics are investigated using structure function analysis.
    When the nonlinearity increases, the irregular dust oscillations cause the broadening of the peaks in the power spectrum.The local dust density follows the power law scaling S(f) ~ f ^ -2.6 over a broad range showing the dynamical selection rule is found. The non-Gaussian histogram of wave height has higher degree of asymmetry than other transverse wave turbulences due to the strong compression in the crest region and the lower bound of dust particles in the trough region. Through the statistical analyses of the different moments of wave height increments, it is found that the intense bursts of the local dust density break the strict self-similar condition and cause the short time intermittent property. The scaling behaviors evolves from monoscaling into multiscaling. This work evidences that the acoustic type wave can also exhibit multifractal intermittent wave turbulence. It should be able to not only inspire future related theoretical works for dust acoustic wave turbulence, but also intrigue the readers in the dusty plasma, plasma, and turbulence communities.
    Table of Content 1  Introduction 1
    2  Background and theory 5
       2.1  Wave turbulence 5
            2.1.1  Resonant wave-ave interaction 5
            2.1.2  Power spectrum 7
            2.1.3  PDF of turbulent wave height 8
       2.2  Intermittency 9
            2.2.1  Fractal 10
            2.2.2  High moment statistical analyses 11
       2.3  Dust acoustic wave 13
            2.3.1  Dusty plasma system 13
            2.3.2  Dust acoustic wave 16
    3  Experiment and data analysis 19
       3.1  Experimental setup 19
       3.2  Data analysis 22
    4  Result and discussion 23
       4.1  Transition from the coherent to the irregular DAW 24
       4.2  Characteristics of DAWT 27
            4.2.1  Power law scaling 27
            4.2.2  Asymmetric distribution of local dust densities 31
       4.3  Intermittency 32
            4.3.1  Shape deformation with time interval 32
            4.3.2  Identifying multiscaling nature through structure functions 35
    5  Conclusion 40
    Bibliography 42
    Reference [1] P. Denissenko, S. Lukaschuk, and S. Nazarenko, Phys. Rev. Lett. 99, 014501 (2007).
    [2] S. Lukaschuk, S. Nazarenko, S. McLelland, and P. Denissenko, Phys. Rev. Lett. 103, 044501 (2009).
    [3] S. Nazarenko, S. Lukaschuk, S. McLelland, and P. Denissenko, J. Fluid Mech. 642, 395 (2009).
    [4] E. Falcon, C. Laroche, and S. Fauve, Phys. Rev. Lett. 98, 094503 (2007).
    [5] F. Boyer and E. Falcon, Phys. Rev. Lett. 101, 244502 (2008).
    [6] E. Falcon, S. Fauve, and C. Laroche, Phys. Rev. Lett. 98, 154501 (2007).
    [7] E. Falcon et al., Europhys. Lett. 90, 34005 (2010).
    [8] P. H. Bryant, C. D. Jeffries, and K. Nakamura, Phys. Rev. A 38, 4223 (1988).
    [9] U. Bortolozzo et al., J. Opt. Soc. Am. B 26, 2280 (2009).
    [10] A. N. Ganshin et al., Phys. Rev. Lett. 101, 065303 (2008).
    [11] G. V. Kolmakov et al., Phys. Rev. Lett. 97, 155301 (2006).
    [12] A. Boudaoud, O. Cadot, B. Odille, and C. Touze, Phys. Rev. Lett. 100, 234504 (2008).
    [13] N. Mordant, Phys. Rev. Lett. 100, 234505 (2008).
    [14] A. Y. Wong and B. H. Quon, Phys. Rev. Lett. 34 (1975).
    [15] G. Y. Antar et al., Phys. Rev. Lett. 87, 065001 (2001).
    [16] S. Futatani, S. Benkadda, Y. Nakamura, and K. Kondo, Phys. Rev. Lett. 100, 025005 (2008).
    [17] J. Pramanik et al., Phys. Lett. A 312, 84 (2003).
    [18] F. Seychelles, F. Ingremeau, C. Pradere, and H. Kellay, Phys. Rev. Lett. 105, 264502 (2010).
    [19] V. E. Zakharov, A. O. Korotkevich, A. Pushkarev, and D. Resio, Phys. Rev. Lett. 99, 164501 (2007).
    [20] B. Chapman, Glow Discharge Process (Wiley, Inter-science Press, 1995).
    [21] V. E. Zakharov, V. S. Lvov, and G. Falkovich, Kolmogorov Spectra of Turbulence I - Wave Turbulence, 1992, Springer-Verlag.
    [22] Henry D. I, Abarbanel, M. I. Rabinovich, M. M. Sushchik, Introduction to Nonlinear Dynamics for Physicists, 1993, World Scientific Pub Co Inc.
    [23] Jens Feder, Fractals, 1988, Springer.
    [24] N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).
    [25] V. N. Tsytovich, U. de Angelis, and R. Bingham, Phys. Rev. Lett. 87, 185003 (2001).
    [26] S. A. Khrapak, A. V. Ivlev, V. V. Yaroshenko, and G. E. Morfill, Phys. Rev. Lett. 102, 245004 (2009).
    [27] J. D. Williams, E. Thomas, Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008).
    [28] V. Nosenko et al., EPL, 88 65001 (2009).
    [29] J. D. Williams and J. Duff, Phys. Plasmas 17, 033702 (2010).
    [30] E. Thomas, Jr., Phys. Plasmas 17, 043701 (2010).
    [31] V. V. Yaroshenko, V. Nosenko, and G. E. Morfill, Phys. Plasmas 17, 103709 (2010).
    [32] T. M. Flanagan and J. Goree, Phys. Plasmas 18, 013705 (2011).
    [33] P. Bandyopadhyay, G. Prasad, A. Sen, and P. K. Kaw, Phys. Rev. Lett. 101, 065006 (2008).
    [34] J. Heinrich, S.-H. Kim, and R. L. Merlino, Phys. Rev. Lett. 103, 115002 (2009).
    [35] R. L. Merlino, J. R. Heinrich, S.-H. Hyun, and J. K. Meyer, Phys. Plasmas 19, 057301 (2012).
    [36] W. D. S. Ruhunusiri and J. Goree, Phys. Rev. E 85, 046401 (2012).
    [37] K. O. Menzel, O. Arp, and A. Piel, Phys. Rev. Lett. 104, 235002 (2010).
    [38] K. O. Menzel, O. Arp, and A. Piel, Phys. Rev. E 84, 016405 (2011).
    [39] K. O. Menzel, O. Arp, and A. Piel, Phys. Rev. E 84, 016402 (2011).
    [40] C. T. Liao et al., Phys. Rev. Lett. 100, 185004 (2008).
    [41] L. W. Teng, M. C. Chang, Y. P. Tseng, and L. I, Phys. Rev. Lett. 103, 245005 (2009).
    [42] P. K. Shukla, Phys. Scr. 45, 504 (1992).
    [43] P. Kaw and R. Singh, Phys. Rev. Lett. 79, 423 (1997).
    [44] A. A. Mamun and P. K. Shukla, Phys. Plasmas 7, 4412 (2000).
    [45] G. S. Selwyn et al., J. Vac. Sci. Technol. A7, 2758 (1989).
    [46] Hiroyuki Ikezi, Phys. Fluids 29, 1764 (1986).
    [47] J. H. Chu, J. B. Du, and Lin I, Phys. D 27, 269 (1994).
    Advisor
  • Lin I(L)
  • Files
  • 992202027.pdf
  • approve in 3 years
    Date of Submission 2012-07-18

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.