Title page for 986204008


[Back to Results | New Search]

Student Number 986204008
Author Ting-ya Yang(楊庭雅)
Author's Email Address No Public.
Statistics This thesis had been viewed 826 times. Download 1757 times.
Department Graduate Institute of Applied Geology
Year 2010
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Simulation of the groundwater flow in Guandu plain
Date of Defense 2011-06-28
Page Count 94
Keyword
  • Arsenic
  • groundwater flow
  • Guandu
  • MODFLOW
  • Abstract Guandu plain is located in northern Taiwan, where is an alluvial plain and few complete wetland system in Taiwan. Previous studies indicated that arsenic (As) concentration of geothermal spring in Beitou area was up to 4.6, significantly exceeding the World Health Organization (WHO) maximum contamination limit (MCL) of 0.01 in drinking water. High As contents may move by groundwater to downstream of coastal plain, wetland, and estuary ecosystem, causing the concern of the domestic safe use of spring water and the potential hazard of ecological environment. The objective of the study is to develop a hydrogeologic model of Guandu plain using MODFLOW and to estimate the flow path of arsenic in groundwater using MODPATH. The simulated groundwater level is calibrated and validated against the measured groundwater level with the root mean square error (RMSE) of 0.778m and the R-square is upon 0.9994 that is extremely significant. The analyzed results show that groundwater flow direction is from the northeast to the southwest which water table decrease with terrain. Furthermore, we estimated that the flow path of arsenic in groundwater was from Huang Gang creek to Guandu plain , and thus requires further research and discussion.
    Table of Content 中文摘要................................................i
    英文摘要................................................ii
    謝誌....................................................iii
    目錄....................................................v
    圖目錄 .................................................vii
    表目錄 .................................................viii
    符號說明................................................ix
    一、緒論 ...............................................1
    1.1研究動機 .........................................1
    1.2研究目的 .........................................4
    1.3文獻回顧 .........................................5
    1.3.1 砷之特性與分佈.............................5
    1.3.2 區域地質概況 ..............................7
    1.3.3 應用MODFLOW於地下水流模擬 ............13
    二、 地下水流數值模式 .................................15
    2.1 MODFLOW介紹..................................15
    2.2 MODPATH介紹 .................................23
    三、 關渡平原地下水流模式..............................26
    3.1水文地質概念模型.................................28
    3.2水文地質參數設定.................................32
    3.3水文地質參數率定與驗證 ..........................41
    3.3.1 模式率定....................................42
    3.3.2模式驗證....................................45
    四、結果與討論.........................................47
    4.1 MODFLOW 模擬結果..............................47
    4.2 MODPATH 模擬結果...............................57
    五、結論與建議.........................................60
    5.1結論.............................................60
    5.2建議.............................................62
    參考文獻...............................................63
    附錄A 、..............................................71
    附錄B 、..............................................78
    Reference 王季蘭,大屯火山區地熱氣體與溫泉水之地球化學特徵,碩士論文,國立中央大學應用地質研究所,桃園,1999。
    王鑫,陽明山國家公園地質及地形景觀,國立台灣大學地理學系,內政部營建署,台北,1986。
    王尚禮,北投關渡砷之來源、傳輸與宿命,北投關渡地區砷污染研討
     會論文集,中興大學土壤環境科學系,台中,2009。
    王聖瑋,底泥對烏腳病地區養殖生態系統中物種砷分布之影響,碩士
     論文,國立台灣大學生物環境系統工程研究所,台北, 2003 。
    因應氣候變遷乾旱時期維生用水開發利用之研究-以臺北市為例,台灣世曦工程顧問股份有限公司,台北, 2010。
    李振誥,台北盆地地下水管制區檢討及土壤液化評估(2/2),期末報告,經濟部水利署,台北,2003。
    李淑芬,大屯火山群七星山火山亞群熔岩層序之研究,碩士論文,國
     立台灣大學地質科學研究所,台北,1996。
    李金靖,蘭陽平原地下水砷之地化特徵及健康風險評估,碩士論文,
     國立台灣大學生物環境系統工程學研究所,台北,2008。
    吳明哲,蘭陽平原地下水及地層中砷之分布與特徵:意涵砷之釋出過程,碩士論文,國立台灣大學生物環境系統工程研究所,台北,
     2008。
    吳偉競,蘭陽平原整合模式下之MODFLOW地下水模擬研究,碩士
     論文,國立中正大學地震研究所暨應用地球物理研究所,嘉義,
     2007。
    吳文菁,探討砷在關渡平原中水田與旱田土壤之分布,碩士論文,國
     立中興大學土壤環境科學系,台中,2008。
    何怡蓉,關渡平原砷污染農地健康與生態風險評估,碩士論文,國立
     台灣大學環境工程學研究所,台北, 2008。
    邱文雅,關渡濕地水土特性分析與生態風險之評估,碩士論文,國立
     台灣大學農業工程研究所,台北,1999。
    林建文,濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建
      立,碩士論文,國立中央大學應用地質研究所,桃園,2009。
    林時猷,以地下水位之區位相關性輔助濁水溪沖積扇地下水模擬之參數決定,碩士論文,逢甲大學土木及水利工程所,台中,2003。
    周彥呂,臺北盆地地下水利用可行性之分析評估及管理,碩士論文,
     國立台灣大學生物環境系統工程研究所,台北,2008。
    陳尊賢、蘇紹瑋、劉天麟,砷污染土壤與作物食品安全性:關渡平原
     研究現況與全球案例文獻回顧,北投關渡地區砷污染研討會論文
     集,國立臺灣大學農業化學系土壤調查與整治研究室,台北,2009。
    陳奕中,關渡濕地沉積物中砷之地化循環與分佈,碩士論文,國立中
     央大學應用地質研究所,桃園,2010。
    陳祐誠,氣候變異下流域地下水資源合理使用之研究,碩士論文,國立成功大學資源工程學系研究所,台南,2009。
    陳函馨,以系統動力學建立感潮河川水理與水質模式,碩士論文,國 
     立中山大學海洋環境及工程學系研究所,高雄,2002。
    陳威智,北投溫泉地區磺港溪底泥中重金屬砷鉛濃度分佈之探討,碩
     士論文,國立台灣大學生物環境系統工程學研究所,台北,2007。
    洪有仁,金門地區地面水與地下水聯合運用,碩士論文,國立台灣大
     學生物環境系統工程學研究所,台北,2006。
    國立台灣大學生態工程研究所,臺北市農地土壤重金屬砷含量調查及查證計畫,臺北市政府環境保護局,台北,2006。
    高克剛,斷層對抽水試驗洩降反應之影響,碩士論文,國立中央大學
     應用地質研究所,桃園,2007。
    張誠信,雲林地區地下水流之三維數值模擬,碩士論文,國立台灣大
     學農業工程學系,台北,1996。
    張尊國,台北市農地土壤重金屬含量調查及查證計畫,台北市政府環
     境保護局,台北,2007。
    徐年盛、張德鑫、吳呈懋、劉宏仁、劉建宏,地下水污染擴散模式建
     立之研究,「地下水污染擴散模式建立之研究」計畫期末報告,行
     政院環保署環境檢驗所,台北,2005。
    施孟璁,關渡平原土壤砷、鉛污染之空間分佈及成因探討,碩士論文,
     國立台灣大學生物環境系統工程學研究所,台北,2007。
    曹恕中、宋聖榮、李寄嵎、王永詢、許銘義、林明昌、蘇泰維,臺北
     盆地關渡一號井火山泥流堆積物初步研究,經濟部中央地質調查所
     彙刊,台北,2000,第13號,第103-118頁。
    許昊,地下水補注量推估之研究-以濁水溪沖積扇為例,碩士論文,
     國立台灣大學生物環境系統工程學研究所,台北,2010。
    黃佳雯,地下水模式工具於污染控制場址範疇界定之研析,碩士論文,國立台灣大學生物環境系統工程學研究所,台北,2004。
    鄧屬予、袁彼得、陳培源、彭志雄、賴典章、費立沅、劉桓吉,臺北
     盆地堆積層的岩性地層,經濟部中央地質調查所特刊,第11號,
     第41-66頁,台北,1999。
    楊佳穎,屏東平原整合模式下之MODFLOW地下水模擬研究,碩士論文,國立中正大學地震研究所暨應用地球物理研究所,嘉義,2007。
    楊萬全,臺北盆地地下水蘊藏量與超抽情形之研究,臺銀季刊,第23卷,第4期,第235-253頁,臺銀,臺北,1972。
    蔡清研,濁水溪沖積扇整合模式下之MODFLOW地下水模擬研究,碩士論文,國立中正大學地震研究所暨應用地球物理研究所,嘉義, 2007。
    蔡英傑,應用穩定同位素18O濃度於地下水水力傳導係數反推之研究,碩士論文,國立成功大學資源工程學系,台南,2006。
    翁士民,雲林縣地下水流況受高鐵開發之影響研究,碩士論文,雲林
      科技大學環境與安全工程系碩士班,雲林,2004。
    潘文健,屏東平原合適出水量分析之研究,碩士論文,國立成功大學資源工程學系,台南,2002。
    龔文瑞,曾文水庫越域引水隧道湧水之研究,碩士論文,國立成功大學資源工程學系,台南,2005。
    Abdel-Fattah, Diefeng G., Synthesis of Zirconia and Hafnia Tubes by Atomic Layer Deposition Template Method Electrochemical Society Transactions, 16(4), 159-164 (2008).
    Akai J., Anawar H.M., Komaki K., Terao H., Yoshioka T., Ishizuka T., Safiullah S., Kato K., 2002, Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes, Journal of Geochemical Exploration , 77, pp. 109–131.
    Albouy R., Bhattacharya P., Bonorino G., Bundschuh J., Cortes J., Farias B., Martinb R., Storniolo A., 2004, Groundwater arsenic in the Chaco-Pampean Plain, Argentina:case study from Robles county, Santiago del Estero Province, Applied Geochemistry,19, pp.231–243.
    Ali, M. A., Badruzzaman, A. B. M., Jalil, M. A., Hossain, D. M., Ahmed, M. F., Masud, A. A., Kamruzzaman, M., and Rahman, A., 2003, Arsenic inplant-soil environment in Bangladesh, Fate of Arsenic in the Environmnt, Dhaka: Bangladesh University of Engineering and echnology; Tokyo: The United Nations University, edited by Ahmed, M.f., Ali, M. A., and Adeel z. (eds),pp. 85-112.
    Allen D., Souhail R.A., Jegadeesan G., Purandare J., 2007, Arsenic release from iron rich mineral processing waste:Influence of pH and
    redox potential, Chemosphere 66, pp.775–782.
    Alonso, H., Romero, L., Campano, P., 2003, Arsenic Enrichment in Waters and Sediments of The Rio Loa(Second Region, Chile), Applied Geochemistry, 18, pp. 1399-1416.
    Arnorsson S., 2003, Arsenic in surface- and up to 90_C ground waters in a basalt area, N-Iceland: processes controlling its mobility, Applied Geochemistry, 18, pp.1297–1312.
    Azizur R. M., Hasegawa H., Kitahara K., Itaya Y., Maki T., Ueda K., 2010, Seasonal changes of arsenic speciation in lake waters in relation to eutrophication, Science of the Total Environment 408, pp.1684–1690.
    Beldoménico, H.R. , Sigrist, M.E., 2004, Determination of inorganic arsenic species by flow injection hydride generation atomic absorption spectrometry with variable sodium tetrahydroborate concentrations, Spectrochimica Acta Part B: Atomic Spectroscopy, 59(7), pp. 1041-1045.
    Benner, S.G., Polizzotto, M.L., Kocar, B.D., Sampson, M., Fendorf, M.,
    2008.Groundwater flow in an arsenic-contaminated aquifer, Mekong
    Delta,Cambodia. Applied Geochemistry. 23 (11), 3072–3087.
    Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., 
    Jacks, G., Martin, R.A., Storniolo, A.d.R., Thir, J.M., 2006. Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment 358, 97-120.

    Bhattarcharya, P., Jacks, G., Jana, J., Sracek, A., Gustafsson, J.P., Chatterjee, D., 2001. Geoochemistry of the Holocene alluvial sediments of Bengal Delta Plain from West Bengal, India: implications on arsenic contamination in groundwater. In: Jacks, G., Bhattacharya, P., Khan, A.A., (eds). Ground-water arsenic contamination in the Bengal Delta Plain of Bangldesh. KTH Special Publication TRITA-AMI Report 3084, 21-40.
    Criaud, A., Fouillac, C., 1989, The Distribution of Arsenic(III) and Arsenic(V) in Geothermal Waters: Examples from The Massif Central of France, the Island of Dominica in The Massif Central of France, The Island of Dominica in The Leeward Islands of The Caribbean, The Valles Caldera of New Mexico, USA, and Southwest Bulgaria, Chemical Geology. 76, pp.256-269.
    Clement, T. P., RT3D: A Modular Computer Code for Simulating Reactive Multi-species Transport in 3-Dimensional Groundwater Systems, PNNL-SA-11720. Pacific Northwest National Laboratory., Richland, Washington, 1997.
    Domenico, P.A., Schwartz, F.W., 1998. Physical and Chemical Hydrogeology. John Wiley, New York.
    Harbaugh, A. W., and McDonald, M.G., 1996. Progrommer documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite- difference groundwater flow model. USGS Open-File Report, 96-486.
    Harvey, C.F., Ashfaque, K.N., Yu, W., Badruzzaman, A.B.M., Ali, M.A., Oates, P.M., Michael, H.A., Neumann, R.B., Beckie, R., Islam, S., Ahmed, M.F., 2006.Groundwater dynamics and arsenic contamination in Bangladesh. Chemical Geology. 228, 112–136.
    Kocar, B.D., Polizzotto, M.L., Benner, S.G., Sampson, M., Fendorf, S., 
    2008. Biogeochemical and depositional controls on arsenic mobility
    within sediments of the Mekong Delta. Chemical Geology.
    McDonald, M.G., Harbaugh, A.W., 1988. A modular three-dimensional finite-difference groundwater flow model. US Geology Survey Technology Water Resource. 34, 586.
    Polizzotto, M.L., Harvey,C.F., Sutton,S.R., Fendorf,S., 2005. Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Science. USA 102, 18819–18823.
    Polizzotto, M.L., Kocar,B.D., Benner,S.G., Sampson,M., Fendorf,S., 2008. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454, 505–508.
    Smedley, P.L., Kinniburgh, D.G., 2003. A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry 17, 517-568.
    Song, S.R., Tsao, S. and Lo, H.J., 2000b. Characteristics of the Tatun
    Volcanic eruptions, northern Taiwan: Implication for a cauldron formation and volcanic evolution. Journal of the Geological Society of China 43(2), 361-378.
    Yokoyama, T., Takahashi, Y., Tarutani, T., 1993. Simultaneous determination of arsenic and arsenious acids in geothermal water. Chemical Geology 103, 103-111.

    Zheng, Y., Stute, M., van Geen, A., Gavrieli, I., Dhar, R., Simpson, H.J., Schlosser, P., Ahmed, K.M., 2004. Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry 19, 201-214.
    Advisor
  • Cheng-Shin Jang(張誠信)
  • Jui-sheng Chen(陳瑞昇)
  • Files
  • 986204008.pdf
  • approve immediately
    Date of Submission 2011-07-26

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.