Title page for 986202002


[Back to Results | New Search]

Student Number 986202002
Author Shih-Lin Tseng(曾世霖)
Author's Email Address tsengshihlin@gmail.com
Statistics This thesis had been viewed 784 times. Download 267 times.
Department Graduate Institute of Geophysics
Year 2010
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title A study on sedimentary processes and sediments of the Gaoping Canyon offshore SW Taiwan
Date of Defense 2011-07-08
Page Count 140
Keyword
  • Gaoping submarine canyon
  • hyperpycnal flows
  • source to sink
  • turbidity currents
  • Abstract The Gaoping submarine canyon, connecting to the Gaoping river, is located offshore southwestern Taiwan on an accretionary wedge. Two major sediment transport processes that deliver Taiwan sediments to abyssal South China Sea are operating along the Gaoping canyon. They are flood-induced hyperpycnal flows and turbidity currents caused by submarine landslides. This study examines sediment cores to infer recent depositional processes along the Gaoping submarine canyon. In addition, I use the sequential submarine cable breakages along the Gaoping canyon during 2009 Morakot typhoon to calculate the flow velocity for the flood-induced hyperpycnal flows.
    This study collected 17 gravity cores after the 2009 Morakot typhoon and 9 piston cores after the onshore 2010 Liouguei earthquake. Both events are accompanied by two episodes of gravity flows as revealed by series of submarine cable breakages along the canyon.
    There are, at least, 3 episodes of submarine cable breakages along the Gaoping canyon during immediately after the 2009 Morakot typhoon. The first hyperpycnal event (2009/8/9) resulted in three locations of cable breakages in the middle and lower reaches (1200-2702 m). The flow velocity exceeded 11 m/s. Timing for this event correlates well with the peak flood of the Gaoping river. It is therefore interpreted as a hyperpycnal-flow event caused by high sediment concentration. For the second event (2009/8/12), there are 8 locations of cable breakages along the lower reach of the Gaoping submarine canyon and the Manila trench with water depth ranging from 2900 m to 3500 m. The flow velocity exceeded 23 m/s. Timing for this event coincides with lower river run-off. I therefore interpret that this event is a turbidity current caused by, perhaps, submarine landslides. For third event (2009/8/13), there is only one location of cable breakage in the middle reach lying at a water depth of 1600 m.
    The onshore Liouguei earthquake induces submarine landslides that evolves into turbidity currents and flows the lower slope of accretionary wedge and the Manila trench as evidenced from. Submarine cable breakages lying in a water depth of 2700-3700 m. The velocity for this turbidity current exceeded 9 m/s.
    Analyses on sediment cores reveal that the Gaoping submarine canyon is controlled by three main depositional processes: hyperpycnal flows triggered by extreme onshore floods; turbidity currents caused by submarine landslides; hemipelagic deposition.
    Sediment by passing and erosive currents are the characteristic features in the upper and middle reaches of the canyon. By contrast, coarser-grained sediment deposition both in channel thalwegs and overbank areas are characteristic in the lower reach of the canyon due to a sudden decrease on canyon gradient. This study reveals that terrigenous materials are transported to deep sea along canyon by hyperpycnal flows during severe floods. Mineral contents and values of δ13C measured from sediments indicate that most of the sediments along the Gaoping canyon are sourced from the Taiwan mountain belt. Turbidity currents triggered by submarine landslides serve as another major sediment transport agent that deliver sediments accumulated in the Gaoping canyon to the Manila trench.
    Table of Content 摘要 I
    AbstractIII
    誌謝V
    目錄VI
    圖目錄VIII
    表目錄XI
    第一章 緒論1
    1.1 研究動機與目的1
    1.2前人研究2
    1.2.1 海域地質災害2
    1.2.2 濁流與異重流的比較3
    1.3 研究資料與方法4
    1.3.1 研究資料來源4
    1.3.2 研究方法4
    第二章 研究區域背景12
    2.1 地體構造及地形12
    2.2 區域地質14
    2.2.1 陸域地質14
    2.2.2 海域地質15
    2.3 海流概況16
    第三章 研究方法28
    3.1 資料蒐集28
    3.2 沉積物分析29
    3.2.1 岩心描述29
    3.2.2 多重感應元岩心掃描儀(MSCL)29
    3.2.3 X光攝影30
    3.2.4 含水量31
    3.2.5 粒徑分析31
    3.2.6 成分分析32
    3.2.6.1 薄片鑑定32
    3.2.6.2 X光粉末繞射分析33
    3.2.7 電子顯微鏡34
    第四章 重力流事件分析41
    4.1 莫拉克颱風事件41
    4.2 六龜地震事件43
    第五章 表層沉積物特徵52
    5.1 物理性質52
    5.2 礦物組成與顆粒組構54
    5.2.1薄片分析54
    5.2.2 X光粉末繞射分析(XRD)54
    5.2.3 沉積物顆粒組構觀察55
    5.3 沉積構造特徵56
    5.3.1沉積物相分類56
    5.3.2 沉積作用57
    5.4 碳13穩定同位素59
    第六章、高屏海底峽谷沉積系統89
    6.1 沉積特徵與沉積作用90
    6.2 由源至匯探討93
    6.3 異重流與濁流之比較94
    第七章 結論97
    參考文獻99
    附錄A、樣本製備流程104
    附錄B、岩心資料107
    Reference 何春蓀(1975)台灣地質概論—台灣地質圖說明書,經濟部中央地質調查所,163 頁。
    何春蓀(1986)台灣地質概論—台灣地質圖說明書,第二版,經濟部中央地質調查所,164頁。
    吳佳瑜(2008)台灣南部海域海底崩移之分佈與特徵。國立台灣大學海洋研究所碩士論文,84頁。
    吳孟麟(2004)高屏海底峽谷與陸棚流場之研究,國立中山大學海洋地質及化學研究所碩士論文,119頁。
    張育嘉(2000)高屏峽谷及附近海域之流場觀測。國立中山大學海洋資源學系研究所碩士論文,91頁。
    扈治安、洪崇勝(2010)台灣海峽沉積物的來龍去脈:多示蹤劑法研究。研究成果報導。
    許鳳心(2008)台灣西南海域陸源有機碳沉降受鄰近島嶼型河川顆粒傳輸影響之硏究。臺灣大學海洋研究所碩士論文,70頁。
    陳文山(1985)臺灣南部恆春半島之地質。國立臺灣大學地質研究所碩士論文,106頁。
    陳汝勤(2005)台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘-總論。經濟部中央地質調查所報告,第94-26號。120頁。
    陳冠宇(2006)台灣西南外海之構造與地形特徵及澎湖海底峽谷演化。國立中央大學地球物理研究所碩士論文,111頁。
    陳培源(2008)台灣地質。台灣應用地質技師公會,28-12頁。
    陳儀清(1997)臺灣西南外海海床表層沉積現象之研究。國立臺灣大學海洋研究所博士論文,160頁。
    曾靜宜(2009)台灣西南海域陸棚及峽谷內沉積物傳輸方式。國立臺灣大學海洋研究所碩士論文。86頁。
    黃安和(2011)臺灣西北部中新世-更新世沉積岩中黏土礦物和成岩作用研究。國立中央大學地球物理研究所碩士論文,103頁。
    楊燦堯(2004)台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘-海床底水與沉積物間隙水之鹽度、氣體化學特性與其同位素組成。經濟部中央地質調查所報告,第93-25-F號,61頁。
    經濟部水利署(2010)中華民國九十八年台灣水文年報第二部分─河川水位及流量。482頁。
    羅建育(2005)快速量測海床沉積物聲學與物理性質之新利器。海洋技術季刊,14(4), 第26-32頁。
    Bouma, A.H. (1962) Sedimentology of some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168.
    Chiang, C.-S., Yu, H.-S. (2006) Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology, 80, 199-213.
    Chiang, C.-S., Yu, H.-S. (2008) Evidence of hyperpycnal flows at the head of the meandering Kaoping Canyon off SW Taiwan. Geo-Marine Lett., 28, 161-169.
    Chiang, C.-S., Yu, H.-S., Chou, Y.-W. (2004) Characteristics of the wedge-top depozone of the southern Taiwan foreland basin system. Basin Res., 16, 65–78.
    Coughenour, C. L., Archer, A. W., Lacovara, K. J. (2009) Tides, tidalites, and secular changes in the Earth-Moon system. Earth-Science Reviews, 97, 59-79.
    Dadson, S. J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C. P., Lague, D., Lin, J.-C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426, 648– 651.
    Dadson, S. J., Hovius, N., Pegg, S., Dade, W. B., Horng, M.J., Chen, H. (2005) Hyperpycnal river flows from an active mountain belt. Journal of Geophysical Research, 110, F04016.
    Deines, P. (1980) The isotopic composition of reduced organic carbon. In: P Fritz and J.Ch Fontes, Editors, Handbook of Environmental Isotope Geochemistry, 1. The Terrestrial Environment, Elsevier, 329–406.
    Dickinson, W. R. (1985) Interpreting provenance relations from detrital modes of sandstones. In: Zuffa, G. (Ed.), Provenance of Arenites. Reidel, Dordrecht, 333–361.
    Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R.A., Lindberg, F. A., Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstone in relation to tectonic setting. Geol. Soc. Am. Bull. 94, 222–235.
    Folk, R. L. (1974) Petrology of sedimentary rocks. Hemphill, Austin, Tx., 182.
    Goldstein, J., Newbury, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L., Michael, J. (2003) Scanning Electron Microscopy and X-ray Microanalysis, 3rd Edition. Springer Press, United States of America, 690.
    Gregory, J. W. (1929) The earthquake south of Newfoundland and submarine canyons. Nature, 124, 945-946.
    Hamblin, W. K., 1962. X-radiography in the study of structures in homogenous sediments. J. Sed. Petrol., 32, 201–210.
    Heezen, B. C., C. L. Drake (1964) Grand Banks slump, Bull. Am. Assoc. Petrol. Geologists, 48, 221-233.
    Heezen, B. C., M. Ewing (1952) Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake. American Journal of Science, 250, 849-873.
    Hilton, R. G., Galy, A., Hovius, N., Horng, M-J., Chen, H. (2010) The isotopic composition of particulate organic carbon in mountain rivers of Taiwan. Geochimica et Cosmochimica Acta, doi: 10.1016/ j.gca.2010.03.004
    Hodgson, E. A., Doxsee, W. W. (1930) The Grand Banks earthquake, November 18, 1929, in proceeding of the 1930 Meeting of the Eastern Section, Seimological Society of America, Earthquake Notes, 2, nos. 1 and 2, 72-81.
    Hsu, S.-K., Kuo,J., Lo, C.-L., Tsai, C.-H., Doo, W.-B., Ku, C.-Y., Sibuet, J.-C. (2008), Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan, Terr. Atmos. Ocean. Sci., 19, 767-772.
    Huh, C.-A., Lin, H.-L., Lin, S.-W., Huang, Y.-W., (2009) Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: a tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems 76, 405-416.
    Johnstone J. H. L. (1930) The Acadian-Newfoundland earthquake of November 18, 1929. Nova Scotian Inst. Sci. Trans. 17, 223-237.
    Keith, A. (1930) The Grand Banks earthquake, in Supplement to Proceedings of the 1930 Meeting of the Eastern Section, Seismological Society of America, Earthquake Notes 2, Supplement to no. 2, 1-5.
    Kneller, B. (1995) Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. In A. J. Hartley, & D. J. Prosser (Eds.), Characterization of deep marine clastic systems (pp. 31–49). Geological Society of London, Special Publication, 94.
    Komar, P. D. (1998) Beach processes and Sedimentation. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 544.
    Lin A. T., Liu, C. S., Lin, C. C., Schnurle, P., Chen, G. Y., Liao, W.-Z., Teng, L. S., Chuang , H.-J., Wu, M.-S. (2008) Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan, Marine Geology, 255(3-4), 186-203.
    Lin, A.T., Yao, B., Hsu, S.-K., Liu, C.-S., Huang, C.-Y. (2009) Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics 479, 28-42.
    Liu, C.-S., Huang, I.-L., Teng, L. S. (1997) Structural features off southwestern Taiwan. Marine Geology, 137, 305-319.
    Liu, C.-S., Lundberg, N., Reed, D., Huang, I.-L. (1993) Morphological and seismic characteristics of the Kaoping submarine canyon. Marine Geology, 111, 93–108.
    Liu, J. T., Lin, H.-L. (2004) Sediment dynamics in a submarine canyon: a case of river-sea interaction. Marine Geology, 207 (1-4), 55-81.
    Liu, J. T., Liu, K. J., Huang, J. C. (2002) The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movement in southern Taiwan. Marine Geology, 181, 357–386.
    Liu, Z., Colin, C., Li, X., Zhao, Y., Tuo, S., Chen, Z., Siringan, F.P., Liu, J.T., Huang, C.-Y., You, C.-F., Huang, K.-F. (2010) Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Marine Geology, 277, 48–60
    Liu, Z., Tuo, S., Colin, C., Liu, J. T., Huang, C.-Y., Selvaraj, A., Chen, C.-T. A., Zhao, Y., Siringan, F. P., Boulay, S., Chen, Z. (2008) Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 255, 149-155.
    Milliman, J. D., Kao, S.-J., (2005) Hyperpycnal Discharge of Fluvial Sediment to the Ocean: Impact of Super-Typhoon Herb (1996) on Taiwanese Rivers. Journal of Geology, 113, 503-516.
    Milliman, J. D., Lin, S. W., Kao, S. J., Liu, J. P., Liu, C.S., et al., (2007) Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology, 35(9), 779-782.
    Mulder T., Alexander, J., (2001) The physical character of subaqueous sedimentary density currents and their deposits. Sedimentology 48, 269-299.
    Mulder, T., Migeon, S., Savoye, B., Fauge`res, J.-C. (2001) Inverselygraded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents? Geo-Marine Letters, 21, 86–93.
    Mulder, T., Syvitski, J. P. M. (1995) Turbidity currents generated at mouths of rivers during exceptional discharges to the world oceans. Journal of Geology, 103, 285-299.
    Mulder, T., Syvitski, J. P. M., Migeon, S., Faugeres, J.-C., Savoye, B. (2003) Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20 , 861–882.
    Mutti E., Tinterri, R., Remacha, E., Mavilla, N., Angella , S., Fava, L. (1999) An introduction to the analysis of ancient turbiditic basins from an outcrop perspective: AAPG, Continuing Education, Course Note Series, no. 39.
    Omura, A., Hoyanagi, K. (2004) Relationships between organic matter composition, depositional environments and sea-level changes in backarc basins, central Japan. Jour. Sedimentary Research , 74(40), 620-630.
    Omura, A., Hoyanagi, K., Ishikawa, S. (2006) Effect of depositional processes on the origin and composition of organic matter: Examples from the Pleistocene sediments in the Choshi core, Boso Peninsula. Island Arc 15, 355–365.
    Plink-Bjorklund, P., Steel, R. J. (2004) Initiation of turbidity currents: outcrop evidence for Eocene hyperpycnal flow turbidites, Sedimentary Geology, 165, 29–52.
    Potter, P. E., Maynard, J. B., Depetris, P. J. (2005) Mud and Mudstones: Introduction and Overview. 297.
    Rau, G.H.; Sweeney, R.H., Kaplan, I.R. (1982) Plankton 13C:12C ratio changes with latitude:Differences between northern and southern oceans. Deep-Sea Research, 29, 1035-1039.
    Reed, D. L., Lundberg, N., Liu, C.-S., Kuo, B.-Y. (1992) Structural relations along the margins of the offshore Taiwan accretionary wedge; implication for accretion and crustal kinematics. Acta Geologica Taiwanica, 30, 105-122.
    Ruddiman, W. F. (2008) Earth’s Climate: Past and Future. 465.
    Shanmugam, G. (2002) Ten turbidite myths. Earth-Science Reviews 58, 311-341.
    Shanmugam, G. (2003) Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Marine and Petroleum Geology, 20, 471–491.
    Shanmugam, G., Shrivastava, S.K., Bhagaban DAS. (2009) Sandy debrites and tidalites of Pliocene reservoir sands in upper-slope canyon environments, offshore Krishna-Godavari basin (India): implications. Journal of Sedimentary Research, 79,736-756.
    Shepard, F. P. (1954) High-Velocity Turbidity Currents, A Discussion. in E.C. Bullard, editor, A Discussion on the Floor of the Atlantic Ocean. February 28, 1953, London, England, Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, Vol. 222, No. 1150, March 18, 323-326.
    Stow, D. A. V., Shanmugam, G. (1980) Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient Flysch sediment. Sedimentary Geology 24, 23-42.
    Stow, D. A. V., Townsend, M. R. (1990) X-ray techniques and observations on distal Bengal Fan sediments cored during Leg116. Proceedings of the Ocean Drilling Program, Scientific Results 116, 5-14.
    Sun, S.-C., Liu, C.-S. (1993) Mud diapers and submarine channel deposits in offshore Kaohsiung-Hengchun, southwest Taiwan: Petrol. Geol. Taiwan, 28, 1-14.
    Suppe, J. (1984) Kinematics of arc-continental collision, flipping of subcretion and back-arc spreading near Taiwna.Mem. Geol. Soc. China, 6, 21-34
    Teng, L. S. (1990) Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57-76.
    Tucker, M. E. (2001) Sedimentary Petrology. Blackwell Science. 262.
    Wright, L. D., Nittrouer, C. A. (1995) Dispersal of river sediments in coastal seas: six contrasting cases. Estuaries, 18 (3), 494-508.
    Yen, Jiun-Yee, and Lundberg, Neil. (2006) Sediment Compositions in Offshore Southern Taiwan and Their Relations to the Source Rocks in Modern Arc-Continent Collision Zone. Marine Geology, 225, 247-63.
    Yu, H.-S. (2006) Hyperpycnal discharge of fluvial sediment to the oceans: Impact of super-typhoon Heb (1996) on Taiwanese rivers: A discussion. Jour. Geol., 114: 763-765.
    Yu, H.-S., Auster, P. J., Cooper, R. A. (1993) Surface geology and biology at the head of Kao-ping canyon off southwestern Taiwan. Terr. Atmos. Ocean. Sci. 4, 441-455.
    Yu, H.-S., Chiang, C.-S. (1996) Seismic and morphological characteristics of the Kaohsiung submarine canyon, southwestern Taiwan. J. Geol. Soc. China, 39, 73-86.
    Yu, H.-S., Chiang, C.-S., Shen, S.-M., (2009) Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Kaoping Submarine Canyon. Jour. Mar. Sys., 76: 369-282.
    Yu, H.-S., Huang, C.-S., Ku, J.-W. (1991) Morphology and possible origin of Kao-ping submarine canyon head off southwest Taiwan. Acta Oceanographica Taiwanica 27, 40-50.
    Yu, H.-S., Huang, E.-C., (1998) Morphology and origin of the Shoushan submarine canyon off southwest Taiwan. J. Geol. Soc. China, 41, 565-579.
    Yu, H.-S., Lee, J. T. (1993) The multi-head Penghu submarine canyon off southwestern Taiwan: Morphology and origin. Acta Oceanogr. Taiwanica, 30, 10-21.
    Yu, H.-S., Wen Y.-H. (1992) Physiographic characteristics of the continental margin off southwestern Taiwan. J. Geol. Soc. China, 36, 337-351.
    Advisor
  • Andrew Tien-Shun Lin(林殿順)
  • Files
  • 986202002.pdf
  • approve in 1 year
    Date of Submission 2011-08-20

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.