Title page for 983208012


[Back to Results | New Search]

Student Number 983208012
Author Chun-Cheng Kuo(郭峻誠)
Author's Email Address No Public.
Statistics This thesis had been viewed 561 times. Download 5 times.
Department Energy of Mechatronics
Year 2010
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title The study of ball-milling and LaNi5 alloy additive on the electrochemical performances of Mg3MnNi2 alloy
Date of Defense 2011-07-13
Page Count 52
Keyword
  • ball-milling
  • IECP method
  • Mg-based alloy electrode
  • Abstract Mg3MnNi2 alloy were prepared by IECP. The Mg3MnNi2 alloy were modified by mechanical ball-milling and LaNi5 alloy additive on the Mg3MnNi2 alloy. The phase structures and electrochemical properties of the ball-milled Mg3MnNi2 alloys and Mg3MnNi2-LaNi5 composites were studied.
    The surface modification of the alloys by mechanical ball-milling led to improvement of the discharge capacity, due to increment surface area and decrement diffusion length for the desorption of absorbed hydrogen. The ball-milled 30 min of Mg3MnNi2 alloy had the largest discharge capacity 206 mAh/g that was higher than the as-cast Mg3MnNi2 alloy 40 mAh/g, but the ball-milled alloys cycle life decreased obviously.
    The ball-milled 30 min Mg3MnNi2- x wt.% as-cast LaNi5 (x=10,20 and 30) composites were fabricated by mechanical ball-milling. It was found that the ball-milled 30 min 30 min Mg3MnNi2 alloy increased cycle life with increment the LaNi5 alloy content. And the ball-milled 30 min Mg3MnNi2-30 wt.% as-cast LaNi5 alloy was effectively maintained high discharge capacity and cycle life.
    Table of Content 中文摘要.................................................i
    英文摘要.................................................ii
    謝  誌.................................................iii
    總 目 錄.................................................iv
    圖 目 錄.................................................vi
    表 目 錄................................................viii
    一、 前言.................................................1
    二、 文獻回顧..............................................3
    2-1 氫能源之開發...........................................3
    2-2 氫能經濟系統...........................................3
    2-3鎳氫電池簡介............................................5
    2-3-1 電池之簡介...........................................5
    2-3-2 鎳氫電池之構造.......................................7
    2-3-3 鎳氫電池之運作原理...................................8
    2-3-4 鎳氫電池之儲氫合金選用..............................10
    2-4 儲氫合金簡介..........................................10
    2-4-1儲氫合金種類介紹.....................................10
    2-4-4 商業化儲氫合金......................................11
    2-4-5 Mg2Ni與Mg-Ni儲氫合金性質介紹........................12
    2-5 Mg-Ni合金製備方式.....................................14
    2-5-1 恆溫揮發鑄造法 (IECP)...............................14
    2-5-2 機械合金法..........................................16
    三、 研究目的與動機.......................................19
    四、 實驗步驟與方法.......................................20
    4-1 合金製備..............................................20
    4-1-1 恆溫揮發鑄造法(IECP)................................20
    4-1-2 電弧熔煉法..........................................21
    4-2 球磨法製備合金........................................21
    4-3 X光繞射分析...........................................22
    4-4 合金粉末粒徑分析......................................22
    4-5 合金粉末表面型態分析..................................22
    4-6 合金腐蝕性質分析......................................22
    4-7 放電電容量與放電循環壽命測試..........................23
    五、 結果與討論...........................................24
    5-1 球磨Mg3MnNi2合金之性質分析............................24
    5-2 球磨30分鐘Mg3MnNi2合金添加鑄態LaNi5合金之性質分析.....31
    5-3 鑄態與改質Mg3MnNi2合金之性質分析......................45
    六、 結論.................................................47
    七、 未來工作.............................................48
    八、 參考文獻.............................................49

    圖目錄
    圖2.1 氫能經濟示意圖.......................................3
    圖2.2 圓柱型、鈕扣型及長方體型鎳氫電池內部構造.............8
    圖2.3 鎳氫電池充放電反應之模型圖...........................9
    圖2.4 Mg2Ni-x Mg3MnNi2系統合金放電電容曲線(a) x=0 (b) x=15 (c) x=30 (d) x=60 (e)x=100................................13
    圖2.5 Mg-Ni 二元相圖......................................15
    圖2.6 恆溫鑄造揮發法圖示 (a) 升溫曲線 (b) 熔煉流程........16
    圖2.7 機械合金法 : A為冷焊、B為脆裂.......................17
    圖2.8 粉末粒徑與球磨時間之關係曲線圖......................17
    圖2.9 鑄態與球磨Mg2Ni合金之放電電容量.....................18
    圖2.10 不同球磨間對Mg2Ni合金之放電電容量..................18
    圖4.1 實驗流程圖..........................................20
    圖4.2 Mg3MnNi2合金熔煉流程圖..............................21
    圖5.1 Mg3MnNi2合金X光繞射分析 (a) 鑄態 (b) 球磨15分鐘 (c) 球磨30分鐘 (d) 球磨60分鐘 (e) 球磨90分鐘....................24
    圖5.2 Mg3MnNi2合金粉體表面型態 (a) 鑄態 (b) 球磨15分鐘 (c) 球磨30分鐘 (d) 球磨60分鐘 (e) 球磨90分鐘..................26
    圖5.3 Mg3MnNi2合金粒徑分析 (a) 鑄態 (b) 球磨15分鐘 (c) 球磨30分鐘 (d) 球磨60分鐘 (e) 球磨90分鐘......................27
    圖5.4 Mg3MnNi2合金放電電容量曲線 (a) 鑄態 (b) 球磨15分鐘 (c) 球磨30分鐘 (d) 球磨60分鐘 (e) 球磨90分鐘..............28
    圖5.5 Mg3MnNi2合金放電循環壽命測試曲線 (a) 鑄態 (b) 球磨15分鐘 (c) 球磨30分鐘 (d) 球磨60分鐘 (e) 球磨90分鐘...........29
    圖5.6 Mg3MnNi2合金腐蝕電流曲線 (a) 鑄態 (b) 球磨15分鐘 (c) 球磨30分鐘 (d) 球磨60分鐘 (e) 球磨90分鐘..................30
    圖5.7 球磨30分鐘Mg3MnNi2合金添加x wt.% 鑄態LaNi5合金X光繞射分析 (a) 鑄態LaNi5 (b) x=0 (c) x=10 (d) x=20 (e) x=30.....32
    圖5.8合金放電循環壽命測試曲線 (a) 鑄態LaNi5合金 (b) 球磨30分鐘Mg3MnNi2合金............................................33
    圖5.9 鑄態LaNi5合金經過不同次數充放電循環測試後之粉體表面型態 (a) 第0次 (b) 第3次 (c) 第6次 (d) 第9次................34
    圖5.10 球磨30分鐘Mg3MnNi2合金添加x wt.% 鑄態LaNi5合金放電循環壽命測試曲線之理論值與實驗值 (a) x=10 (b) x=20 (c) x=30.36
    圖5.11 球磨30分鐘Mg3MnNi2合金添加x wt.% 鑄態LaNi5合金放電循環壽命測試曲線 (a) x=10 (b) x=20 (c) x=30.................38
    圖5.12 合金電極經8次充放電循環測試後腐蝕電流曲線 (a) 球磨30分鐘Mg3MnNi2合金 (b) 球磨30分鐘Mg3MnNi2-30 wt.% LaNi5複合材料........................................................40
    圖5.13 球磨30分鐘Mg3MnNi2-30 wt.% LaNi5合金球磨後之X光繞射分析 (a) 球磨0秒 (b) 球磨30秒 (c) 球磨60秒..................41
    圖5.14 球磨30分鐘Mg3MnNi2-30 wt.% LaNi5合金球磨後之粉末表面型態 (a) 球磨0秒 (b) 球磨30秒 (c) 球磨60秒................42
    圖5.15 球磨冷焊效應示意圖.................................42
    圖5.16 球磨30分鐘Mg3MnNi2-30 wt.% LaNi5合金球磨後之粒徑分析 (a) 球磨 0 秒 (b) 球磨30秒 (c) 球磨60秒...................43
    圖5.17 球磨30分鐘Mg3MnNi2-30 wt.% LaNi5合金球磨後之放電循環壽命測試 (a) 球磨0秒 (b) 球磨30秒 (c) 球磨60秒............44
    圖5.18 Mg3MnNi2合金放電循環壽命測試曲線 (a) 鑄態 (b) 改質型........................................................46

    表目錄
    表2-1 各種儲存氫氣方式中體積密度的比較.....................4
    表2-2電池種類表............................................6
    表2-3 二次電池比較表.......................................7
    表2-4 儲氫合金特性........................................11
    表2-5 AB2與AB5型儲氫合金之特性比較........................12
    表2-6 添加元素對Mg2Ni儲氫合金電化學影響...................14
    表5-1 Mg3MnNi2合金之晶粒尺寸..............................25
    表5-2 Mg3MnNi2合金之粉末顆粒尺寸與比表面積................27
    表5-3 Mg3MnNi2合金放電電容量與放電循環壽命衰退比率........29
    表5-4 Mg3MnNi2合金之腐蝕電位與腐蝕電流....................31
    表5-5球磨30分鐘Mg3MnNi2合金添加x wt.% 鑄態LaNi5合金放電循環壽命衰退比率之理論值與實驗值..............................37
    表5-6 球磨30分鐘Mg3MnNi2合金添加x wt.% 鑄態LaNi5合金放電電容量與放電循環壽命衰退比率..................................38
    表5-7合金電極經8次充放電循環測試後之腐蝕電位與腐蝕電流....40
    表5-8 球磨30分鐘Mg3MnNi2-30 wt.% LaNi5合金之粉末顆粒尺寸..43
    表5-9 球磨30分鐘Mg3MnNi2- 30 wt.% LaNi5合金球磨後之放電電容量與放電循環壽命衰退比率..................................45
    表5-10 鑄態與改質Mg3MnNi2合金放電電容量與放電循環壽命衰退比率........................................................46
    Reference [1] K. T. Chau, Y. S. Wong, C. C. Chan, “An overview of energy sources for electric vehicles”, Energy Conversion & Management, Vol.40, pp.1021-1039 (1999)
    [2] Gowri S. Nagarajan, J. W. Van Zee, “Characterization of the performance of commercial Ni/MH batteries”, Journal of Power Sources, Vol.70, pp.173-180 (1998)
    [3] Daniel Assumpcao Bertuol, Andrea Moura Bernards, Jorge Alberto Soares Tenorio, “Spent NiMH batteries: Characterization and metal recovery through mechanical processing”, Journal of Power Sources, Vol.160, pp.1465-1470 (2006)
    [4] G. Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, Journal of Alloys and Compounds, Vol.293-265, pp.877-888 (1999)
    [5] Li Sun, Pei Yao, Huakun Liu, Douglas H. Bradhurst, Shixue Duo, “Mg2Ni hydride electrodes prepared by sintering and subsequent ball milling with Ni powders”, Journal of Alloys and Compounds, Vol.293-295, pp.536-540 (1999)
    [6] Yang-Huan Zhang, Ping Li, Xin-Lin Wang, Yu-Fang Lin, Guo-qing Wang, “The effects of rapid quenching on the electrochemical characteristics and microstructures of AB2 Laves phase electrode alloys”, Journal of Powder Sources, Vol.128, pp.90-96 (2004)
    [7] B. Luan, N. Cui, H. K. Liu, H. J. Zhao, S. X. Dou, “Characteristics of magnesium-based hydrogen-storage alloy electrodes”, Journal of Powder Sources, Vol.55, pp.263-267 (1995)
    [8] Nam Hoon Goo, Junh Hoon Woo, Kyung Sub Lee, “Mechanism of rapid degradation of nanostructured Mg2Ni hydrogen storage electrode synthesized mechanical alloying and the effect of mechanically coating with nickel”, Journal of Alloys and Compounds”, Vol.288, pp.286-293 (1999)
    [9] L. W. Huang, O. Elkedim, M. Jarzwbski, R. Hamzaoui, M. Jurczyk, “Structural characterization and electrochemical hydrogen storage properties of Mg2Ni1-xMnx (x=0,0.125,0.25,0.375) alloys prepared by mechanical alloying”, Internation Journal of Hydrogen Energy”, Vol.35, pp.6794-6803 (2010)
    [10] A. Gasiorowski, W. Iwasieczko, D. Skoryna, M. Jurczyk, “Hydriding properties of nanocrystalline Mg2-xMxNi alloys synthesized by mechanical alloying (M=Mn,Al)”, Journal of Alloys and Compounds, Vol.364, pp.283-288 (2004)
    [11] Hao Niu, Derek O. Northwood, “Enhanced electrochemical properties of ball-milled Mg2Ni electrodes”, International Journal of Hydrogen Energy, Vol.27, pp.69-77 (2002)
    [12] Shinji Nohara, Naoya Fujita, Shu Guo Zhang, Hiroshi Inoue, Chiaki Iwakura, “Electrochemical characteristics of a homogeneous amorphous alloy prepared by ball-milling Mg2Ni with Ni”, Journal of Alloys and Compounds, Vol.267, pp.76-78 (1998)
    [13] T. Z. Si, Q. A. Zhang, “Phase structures and electrochemical properties of the laser sintered LaNi5-x wt.% Mg2Ni composites”, Journal of Alloys and Compounds, Vol.414, pp.317-321 (2006)
    [14] B. W. Lang, “Monitoring changes in economy-wide energy efficiency : From energy-GDP ratio to composite efficiency index”, Energy Policy, Vol.34, pp.574-582 (2006)
    [15] W. C. Lattin, V. P. Utgikar, “Transition to hydrogen economy in the United States : A 2006 status report”, Internation Journal of Hydrogen Energy, Vol.32, pp.3230-3237 (2007)
    [16] George W. Crabtree, Mildred S. Dresselhaus, Michelle V. Buchanan, “The hydrogen economy”, Physics Today, Vol.57, pp.39-44 (2004)
    [17] Gregorio Marban, Teresa Valdes-Solis, “Towards the hydrogen economy”, Internation Journal of Hydrogen Energy”, Vol.32, pp.1625-1637 (2007)
    [18]A. Zuttel, “Materials for hydrogen storage”, Materials Today, Vol.6, pp.24-33 (2003)
    [19] U. Eberle, G. Arnold, R. Von Helmolt, “Hydrogen storage in metal-hydrogen system and their derivatives”, Journal of Powder Sources, Vol.154, pp.456-460 (2006)
    [20] S. A. Sherif, F. Barbir, T. N. Veziroglu, “Wind energy anf the hydrogen economy-review of the technology”, Solar Energy, Vol.78, pp.647-660 (2005)
    [21] W. Iwasaki, “A consideration of powder density and hydrogen production and utilization technologies”, International Journal of Hydrogen Energy, Vol.28, pp.1325-1332 (2003)
    [22] D. F. Warne, “Electrical powder enginner,s handbooks”, Elsevier publisher, pp.372 (2005)
    [23] Jeng-Kuei, Dyi-Nan Simon Shong, Wen-Ta Tsai, “Effect of Ni content on the electrochemical characteristics of the LaNi5-based hydrogen alloys”, Materials Chemistry and Physics, Vol.83, pp.361-366 (2004)
    [24] 陳松誼,“電動機車殘存電量顯示之研究”, 國立台灣大學機械工程研究所碩士論文 (2001)
    [25] Tobias Muller, Bernd Friedrich, “Development of a recycling process for nickel-metal hydride batteries”, Journal of Power Sources, Vol.158, pp.1498-1509 (2006)
    [26] Kuochih Hong, “The development of hydrogen storage electrode alloys for nickel hydride batteries”, Journal of Power Sources, Vol.96, pp.85-89 (2001)
    [27] F. Feng, M. Geng, D. O. Northwood, “Electrochemical behavior of intermetallic-based metal hydride used in Ni/metal hydride (MH) batteries : a review”, Internation Journal of Hydrogen Energy, Vol.26, pp.725-734 (2001)
    [28] M. Jurczyk, L. Smardz, K. Smardz, M. Nowak, E. Jankowska, “Nanocrystalline LaNi5-type electrode material for Ni-MH batteries”, Vol.171, pp.30-37 (2003)
    [29] Kolachev B. A., Ilyin A. A., “The structure outline of hydrogen storage alloys”, International Journal of Hydrogen Energy, Vol.21, pp.975-980 (1996)
    [30] Gary Sandrock, ” A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, Journal of Alloys and Compounds Vol. 293, pp.877-888 (1999)
    [31] A. H. Boonstra, G. J. M. Lippits, T. N. M. Bernards, “Degradation process in a LaNi5 electrode”, Journal of the Less Common Metals, Vol. 155, pp.119-131 (1989)
    [32] 陳軍, 陶占良著, “鎳氫二次電池”, 化學工業出版社, pp.96-110 (2006)
    [33] A. Seiler, L. Schlapbach, Th. Von Waldkirch, D. Shaltiel, F. Stucki, “Surface analysis of Mg2Ni---Mg,Mg2Ni and Mg2Cu” Journal of the Less Common Metals, Vol.73, pp.193-199 (1980)
    [34] Fu-Kai Hsu , Chih-Kuang Lin , Sheng-Long Lee , Chun-Yu Lin , Hui-Yjun Bor , “Effect of Mg3MnNi2 on the electrochemical characteristics of Mg2Ni electrode alloy”, Journal of Powder Sources , vol. 195 , pp.374-379 (2010)
    [35] Hiroshi Inoue, Tomomichi Ueda, Shinji Nohara, Naoya Fujita, Chiaki Iwakura, “Effect of ball-milling on electrochemical and physicochemical characteristics of crystalline Mg2Ni alloy”, Pergamon, pp.2215-2219 (1997)
    [36] Nikola Drenchev, Tony Spassov, Stoyan Bliznakov, “Influence of tin on the electrochemical and gas phase hydrogen sorption in Mg2-xSnxNi (x=0,0.1,0.3)”, Journal of Alloys and Compounds, Vol.450, pp.288-292 (2008)
    [37] Yongfeng Liu, Yanhui Cao, Li Huang, Mingxia Gao, Hongge Pan, “Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrodes material for Ni/MH batteries”, Journal of Alloys and Compounds, Vol.509, pp.678-686 (2011)
    [38] Che-Wei Hsu, Sheng-Long Lee, Rong-Ruey Jeng, Jing-Chie Lin, “Mass production of Mg2Ni alloy bulk by isothermal evaporation casting process”, International Journal of Hydrogen Energy, Vol.32, pp.4907-4911 (2007)
    [39] C. Suryanarayana,“Mechanical Alloying and Milling”, Progress in Materials Science, Vol.46, pp.32-36 (2001)
    [40] Mario Crosa, Valter Boero, Marinella Franchini-angeal, “Determination of mean crystallite dimensions from X-ray diffraction peak profile: A comparative analysis of synthetic hematites”, Clays and Clay Minerals, Vol.47, pp.742-747 (1999)
    [41] F. Domine, A.-S. Taillandier, A. Cabanes, T. A. Douglas, M. Sturm, “Three examples where the specific surface area of snow increased over time”, The Cryosphere , Vol.3, pp.31-39 (2009)
    [42] Yongfeng Liu, Hongge Pan, Mingxia Gao, Yongquan Lei, Qidong Wang, “Degradation mechanism of the La-Mg-Ni-based metal hydride electrode La0.7Mg0.3Ni3.4Mn0.1”, Journal of The electrochemical Socirty, Vol.152, pp.A1089-A1095 (2005)
    [43] N. Cui, B. Luan, H. J. Zhao, H. K. Liu, S. X. Dou, “Synthesis and electrode characteristics of the new composite alloys Mg2Ni-x wt.% Ti2Ni”, Journal of Alloys and Compounds, Vol.240, pp.229-234 (1996)
    [44] Stephane Ruggeri, Lionel Roue, ”Correlation between charge input and cycle life of MgNi electrode for Ni-MH batteries”, Journal of Power Sources, Vol.117, pp.260-266 (2003)
    [45] Ji-ling Zhu, Yun-hong Zhou, Hanxi Yang, “Effect of lanthanum and neodymium hydroxides on secondary alkaline zinc electrode”, Journal of Power and Sources, Vol.69, pp.169-173 (1997)
    Advisor
  • Sheng-Long Lee (李勝隆)
  • Files
  • 983208012.pdf
  • disapprove authorization
    Date of Submission 2011-08-13

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.