Title page for 983203105


[Back to Results | New Search]

Student Number 983203105
Author Cheng-en Wu(吳承恩)
Author's Email Address A9403116@mail.ntust.edu.tw
Statistics This thesis had been viewed 551 times. Download 11 times.
Department Mechanical Engineering
Year 2010
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title The effect of 6063 Aluminum alloy heat treatment and cold-rolling process on the formation of AAO films.
Date of Defense 2011-07-04
Page Count 91
Keyword
  • 6063 aluminum
  • anodic aluminum oxide film
  • Mg2Si
  • Abstract The aim of the study is to investigate the effect of the anodic aluminum oxide film
    (AAO film) formed on the 6063 aluminum alloy by using anodizing treatment. Through
    the manufacturing process including annealing, artificial ageing treatment and
    cold-rolling, the variation of AAO film of 6063 aluminum alloy revealed especially on
    its microstructure, the angle of grain boundaries and the status of precipitate materials.
    Furthermore, the anodizing was utilized to explore the influence on the AAO film from
    the base structure. Also, voltage-time (V-t) curve in the process of anodizing was
    recorded. After the above manufacturing process, the effect of the microstructure on the
    growing behavior of the porous AAO film was observed by using SEM. In addition, the
    SIMS was used to examine element the depth profiles of AAO film in the step 4 of V-t
    curve. Then, the XPS was utilized to analyze the composition of AAO film surface in
    the step 2 of V-t curve.
    As the EBSD results indicated that the grain boundary was at medium/ high angle
    present in O, O-T4-T6, O-rolling40%-T4-T6 specimens. In comparison, the main grain
    boundary was low angle with O-T4-rolling40%-T6 specimen. Thus, the microstructure
    of 6063 aluminum alloy significantly changed during the cold-rolling process. It
    affected the Mg2Si precipitate particles, and the phase transformation occurred. In
    respect to the variation of V-t curve, the voltage of the test fragment with cold-rolling
    process became higher in the step 2. Moreover, the above test fragment consumed less
    energy in the step 3. Concerning the cold-rolled 6063 aluminum alloy, therefore, it is
    suggested that the decreasing of pore population, and increasing the pore diameter of the
    AAO films.
    As SIMS analysis, the distribution of Si ion reduced with depth of AAO film, and
    AlOH was raised. Consequently, there were several findings from the XPS analysis as
    III
    following. In the O 1s analysis, the AAO film mainly contains of Al-O-H bonding phase,
    Al(OH)3 hydrated oxide and several Al-O bonding phase. O-rolling40%-T4-T6 and
    O-T4-rolling40%-T6 obtained higher Al-O bonding phase. Because of the dislocation
    and hydrogen were produced in the Al matrix after the cold rolling process. Regarding
    with the dimension of Si 2p, it was investigated that the main composition of AAO film
    is Al2SiO5.
    Table of Content 目錄
    中文摘要 I
    Abstract II
    致謝 IV
    目錄 V
    圖目錄 VII
    表目錄 XI
    第一章 前言 1
    第二章 理論探討與文獻回顧 2
    2-1 鋁合金的簡述 2
    2-1-1 鋁合金的類型  2
    2-2 鋁合金熱處理簡述 3
    2-3 Al-Mg-Si簡介 4
    2-4 Al-Mg-Si 合金的析出強化熱處理 6
    2-4-1 Al-Mg-Si合金時效分析與析出過程 7
    2-4-2 Al-Mg-Si合金兩段時效探討 10
    2-4-3 金屬材料再結晶理論與過程 12
    2-4-4 Al-Mg-Si合金輥軋(rolling)簡介 13
    2-5 陽極處理 16
    2-5-1 陽極皮膜種類與成長機制 17
    2-5-2 陽極皮膜生成的電壓-時間曲線(V-t curve) 19
    2-5-3 Al-Mg-Si合金時效後陽極之影響 22
    第三章 實驗方法與步驟 23
    3-1 實驗目的 23
    3-2 實驗材料及試片準備 23
    3-3 實驗儀器 23
    3-4 實驗步驟 24
    第四章 結果與討論 29
    4-1 熱處理與輥軋變形的分析 29
    4-1-1 6063-O微結構分析 29
    4-1-2 6063-O-T4-T6微結構分析 36
    4-1-3 退火-輥軋-T4-T6與退火-T4-輥軋-T6 微結構分析 39
    4-1-4 6063鋁合金微結構綜論 46
    4-2 陽極皮膜性質分析 47
    4-2-1 二次離子質譜儀(SIMS)分析陽極皮膜 55
    4-2-2 陽極皮膜X射線光電子能譜(XPS)分析 60
    4-2-3 陽極皮膜色澤的變化 67
    第五章 結論 68
    參考文獻 69
    附錄 76
    Reference [1]J. E. Hatch, “Aluminum properties and physical metallurgy ” , American society for metals , 1984
    [2]W. B. Lee , “The improvement of mechanical properties of friction-stir-welded A356 Al alloy” , Materials science and Engineering A , 355 , pp.154-159 , 2003
    [3]L. Zhen, W. D. Fei, S. B. Kang, H. W. Kim, ”Precipitation behaviour of Al-Mg-Si alloys with high silicon content”, Journal of Materials Science 32, pp.1895-1902, 1997
    [4]M. Takeda, F. Ohkubo, T. Shirai, K. Fukui, “Precipitation behavior of Al-Mg-Si ternary alloys”, Materials Science Forum, Vol.217-222, pp.815-820, 1996
    [5]日本輕金屬學會委員, “鋁合金之組織與性質”, 日本輕金屬學會, pp.278
    [6]W. H. Cubberly, Heat treating, 9th ed., Metals Handbook, Vol.22, American Society for Metals, Metals Park, OH, pp.674– 676, 1981
    [7]D. Apelian, S. Shivkumar and G. Sigworth, “Foundmental aspects of heat treatment of cast Al-Si-Mg alloys”, AFS Trans, Vol.97,pp.727-742, 1989
    [8]葉均蔚等編著,“鋁合金之析出硬化”,材料工程實驗與原理,修訂版,全華圖書,新北市土城區,民國九十七年三月。
    [9]I.Dutta, S. M.Allen, “A calorimetric study of precipitation in commerical aluminum alloy 6061” , Journal of materials science letters, Vol.10, pp.323-326, 1991
    [10]G. A. Edwards, K. Stiller, G. L. Dunlop and M. J. Couper, ”The Precipitation Sequence in Al-Mg-Si Alloy”, Acta Materialia, Vol.46, pp.3893-3904, 1998
    [11]M. Takeda, F. Ohkubo, T. Shiral, “Stability of metastable phases and microstructures in the ageing process of Al–Mg–Si ternary alloys”, Journal of materials science letters, Vol.33, pp.2385-2390, 1998
    [12]K. Matsuda and S. Ikeno, “Microstructures of aged Al–Mg–Si alloys”, Journal of Japan Institute of Light Metals, Vol.53, pp.457-462, 2003
    [13]W. F. Miao, D. E. Laughlin, “Precipitation Hardening in Aluminum Alloy 6022 ”, Scripta Materialia, Vol.40, pp.873-878, 1999
    [14]A. Lutts, “ Pre-precipitation in Al-Mg-Ge and Al-Mg-Si ”, Acta Metallurgica, Vol.9, pp.577-586, 1961
    [15]F. R. Fickett, “Aluminum-1. A review of resistive mechanisms in aluminum ”, Cryogenics, Vol.11, pp.349-367, 1971
    [16]B. Raeisinia and W. J. Poole, “ Electrical resistivity measurements: A sensitive tool for studying aluminum alloys ”, Materials Science Forum , Vol.519-521, pp.1391-1396, 2006
    [17]C. Panseri, T. Federighi, “A Resistometric Study of Preprecipitation in an Aluminium-1.4% Mg2Si Alloy”, Journal of the Institute of Metals, Vol.94, pp.99-107, 1966
    [18]M. H. Mulazimoglu, R. A. L. Drew and J. E. Gruzelski, “Electrical conductivity of aluminum-rich Al-Si-Mg alloys”, Journal of Materials Science Letters, Vol.8, pp.297-300, 1989
    [19]H. Seyedreza, D. Grebennikov, P. Mascherb, H. S. Zuroba, “Study of the early stages of clustering in Al–Mg–Si alloys using the electrical resistivity measurements”, Materials Science and Engineering A, Vol.525, pp.186-191, 2009
    [20]T. Hirata, S. Matsuo, “Two-Step Ageing Behaviours in an Al-1.2wt.%Mg2Si Alloy”, Transactions of the Japan Institute of Metals, Vol.13, pp.231-237, 1972
    [21]H. HATTA, S. MATSUDA, H. YOSHIDA, “Two-step aging behaviors of Al–Mg–Si alloy extrusions”, Journal of Japan Institute of Light Metals, Vol.56, pp.667-672, 2006
    [22]D. W. Pashley, M. H. Jacobs, J. T. Vietz, “The basic processes affecting Two-step Ageing in an Al-Mg-Si Alloy”, The Philosophical Magazine, Vol.16, pp.51-76, 1967
    [23]G. W. Lorimer, R. B. Nicholson, “Further results on the nucleation of precipitates in the Al-Zn-Mg system”, Acta Metallurgica, Vol.14, pp.1009-1013, 1966
    [24]Y. Baba, A. Takashima, “Influence of Composition on the Two-Stage Aging of Al-Mg-Si Alloys”, The Japan Institute of Metals, Vol.10, pp.196-204, 1969
    [25]N. Ohenda, M. Shimura, Y. Takeuchi, “Two-stepped ageing of Al-1.3% Mg2Si alloy”, Light Metal, Vol.19, pp.41-46, 1969
    [26]B. L. Ou, C. H. Shen, “Effect of preaging on precipitation behavior in aluminum alloy 6063 during high-temperature aging”, Scandinavian Journal of Metallurgy, Vol.33, pp.105-112, 2004
    [27]G. E. Dieter, Mechanical Metallurgy, SI Metric Edition, McGraw-Hill Book Company, London, (1989/3/1), pp.184-240
    [28]R. Hill, E. Robert, Abbaschian, Reza, Physical Metallurgy Principles, Third edition, Thomson Learning, Boston, (1991/11/1), pp227-269
    [29]T. Sakai, H. Miura, A. Goloborodko, O. Sitdikov, “Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475”, Acta Materialia, Vol.57, pp.153-162, 2009
    [30]J. P. Lin, T. C. Lei, X. Y. An, “Dynamic Recrystallization during Hot Compression in Al-Mg Alloy”, Scripta Metallurgica, Vol.26, pp.1869~1874, 1992
    [31]S. K. Panigrahia, R. Jayaganthan, V. Pancholia, M. Gupta, “A DSC study on the precipitation kinetics of cryorolled Al 6063 alloy”, Materials Chemistry and Physics, Vol.122, pp.188-193, 2010
    [32]S. K. Panigrahia, R. Jayaganthan, V. Pancholi, “Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy”, Materials and Design, Vol.30, pp.1894-1901, 2009
    [33]S. K. Panigrahia, R. Jayaganthan, “Development of ultrafine grained Al–Mg–Si alloy with enhanced strength and ductility”, Journal of Alloys and Compounds, Vol.470, pp.285-288, 2009
    [34]S. K. Panigrahia, R. Jayaganthan, “A study on the mechanical properties of cryorolled Al–Mg–Si alloy”, Materials Science and Engineering A, Vol.480, pp.299-305, 2008
    [35]S. K. Panigrahia, R. Jayaganthan, V. Chawla, “Effect of cryorolling on microstructure of Al–Mg–Si alloy”, Materials Letters, Vol.62, pp.2626-2629, 2008
    [36]S. K. Panigrahia, R. Jayaganthan, “Effect of annealing on precipitation, microstructural stability, and mechanical properties of cryorolled Al 6063 alloy”, Journal of Materials Science, Vol.45, pp.5624-5636, 2010
    [37]S. K. Panigrahia, R. Jayaganthan, “Effect of rolling temperature on microstructure and mechanical properties of 6063 Al alloy”, Materials Science and Engineering A, Vol.492, pp.300-305, 2008
    [38]S. K. Panigrahia, R. Jayaganthan, “Influence of solutes and second phase particles on work hardening behavior of Al 6063 alloy processed by cryorolling”, Materials Science and Engineering A, Vol.528, pp.3147-3160, 2011
    [39]H. Masuda, F. Hasegwa, S. Ono, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”, Journal of The Electrochemical Society, Vol.144, pp.127-130, 1997
    [40]G.E. Thompson, “Porous anodic alumina: fabrication, characterization and applications”, Thin Solid Films, Vol.297, pp.192-201, 1997
    [41]O. Jessensky, F. Müller, U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina” , Applied Physics Letters, Vol.72, pp.1173-1175, 1998
    [42]J. P. O’Sullivan, G. C. Wood, “The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminum”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.317, pp.511-543, 1970.
    [43]G. E. Thompson and G. C. Wood, “Porous Anodic Film Formation on Aluminum”, Nature, Vol.290, pp.230-232, 1981.
    [44]Y. S. Kim, S. I. Pyun, S. M. Moon, J. D. Kim, “The effects of Applied Potential and pH on The Electrochemical Dissolution of Barrier Layer in Porous Anodic Oxide Film on Pure Aluminum”, Corrosion Science, Vol.38, pp.329-336, 1996.
    [45]G. C. Wood, J. P. O’Sullivan, “The Anodizing of Aluminium in Sulphate Solutions”, Electrochimica Acta, Vol.15, pp.1865-1876, 1970.
    [46]G. Patermarakis, P. Lenas, Ch. Karavassilis, G. Papayiannis, “Kinetics of Growth of Porous Anodic Al2O3 Films on A1 Metal”, Electrochimica Acta, Vol.36, pp.709-725, 1991.
    [47]G. Patermarakis, K. Moussoutzanis, J. Chandrinos, “Discovery by kinetic studies of the latent physicochemical processes and their mechanisms during the growth of porous anodic alumina films in sulfate electrolytes”, Journal of Solid State Electrochemistry, Vol.6, pp.39-54, 2001
    [48]T. S. Shih, P. S. Wei and “Monitoring the progressive development of an anodized film on aluminum”, Journal of the Electrochemical Society, Vol.154, pp.678-683, 2007
    [49]T. S. Shih, P. S. Wei, Y. S. Yung, “Optical properties of anodic aluminum oxide films on Al1050 alloys”, Surface & Coatings Technology, Vol.202, pp.3298-3305, 2008
    [50]I. Farnan, R. Dupree, A. J. Forty, Y. S. Jeong, G. E. Thompson and G.C. Wood, “Structural information about amorphous anodic alumina from Al MAS NMR”, Philosophical Magazine Letters, Vol.59, pp.189-195, 1989
    [51]T. P. Hoar and J. Yahalom, “The initiation of pores in anodic oxide films formed on aluminum in acid solutions”, Journal of the Electrochemical Society, Vol.110, pp.614-621, 1963
    [52]I. Tsangaraki-Kaplanoglou, S. Theohari, Th. Dimogerontakis, Y. M. Wang , H. H. Kuo, S. Kia, “Effect of alloy types on the anodizing process of aluminum”, Surface & Coatings Technology, Vol.200, pp.2634-2641, 2006
    [53]S. Wernick, R. Pinner, P. G. Sheasby, “The Surface Treatment and Finishing of Aluminum and Its Alloys”, ASM International and Finishing Publications, Ltd., Teddington, U.K. 5th ed, pp.286-368, 1987
    [54]G. Horvath, N. Q. Chinh, J. Gubicza, J. Lendvai, “Plastic instabilities and dislocation densities during plastic deformation in Al–Mg alloys”, Materials Science and Engineering A, Vol.445-446, pp.186-192, 2007
    [55]R. Ozao, H. Yoshida, T. Inada, M. Ochiai, “Sulfur Concentration in Nanoporous Alumina Membrane: Studied by TA and XPS”, Journal of Thermal Analysis and Calorimetry, Vol.72, pp.113-118, 2003
    [56]A. K. Ray, G. Das, M. Das, S. Ghosh, P. Dubey, “Effect of aging on mechanical properties of 6063 Al-alloy using instrumented ball indentation technique” , Materials Science and Engineering A, Vol.527, pp.1590-1594, 2010
    [57]D. Kuhlman-Wilsdorf, “Regular deformation bands (DBs) and the LEDS hypothesis”, Acta Materialia, Vol.47, pp.1697-1712, 1999
    [58]R. S. Yassar, D. P. Field, H. Weiland, “The Effect of Cold Deformation on the Kinetics of the β” Precipitates in an Al-Mg-Si Alloy”, Metallurgical and Materials Transactions A, Vol.36A, pp.2059-2064, 2005
    [59]J. C. Walmsley, C. J. Simensen, A. Bjørgum, F. Lapique, K. Redford, “The Structure and Impurities of Hard DC Anodic Layers on AA6060 Aluminium Alloy”, The Journal of Adhesion, Vol.84, pp.543-561, 2008
    [60]L. E. Fratila-Apachitei, F. D. Tichelaar, G. E. Thompson, H. Terryn, P. Skeldon, J. Duszczyk, L. Katgerman, “A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys”, Electrochimica Acta, Vol.49, pp.3169-3177, 2004
    [61]G. E. Thompson, P. Skeldon, X. Zhou, K. Shimizu, H. Habazaki, C. J. E. Smith, “Improving the performance of aerospace alloys”, Aircraft Engineering and Aerospace Technology, Vol.75, pp.372-379, 2003
    [62]M. R. Alexander, G. E. Thompson, G. Beamson, “Characterization of the oxide-hydroxide surface of aluminum using x-ray photoelectron spectroscopy-a procedure for curve fitting the O 1s core level” , Surface and Interface Analysis, Vol.29, pp.468-477, 2000
    [63]H. M. Liao, R. N. S. Sodhi, T. W. Coyle, “Surface composition of AlN powders studied by x‐ray photoelectron spectroscopy and bremsstrahlung‐excited Auger electron spectroscopy”, Journal of Vacuum Science & Technology A, Vol.11, pp.2681-2686, 1993
    [64]S. Feliu, Jr., Ma. J. Bartolomé, J. A. González, S. Feliu, “XPS Characterization of Porous and Sealed Anodic Films on Aluminum Alloys”, Journal of The Electrochemical Society, Vol.154, pp.C241-C248, 2007
    [65]John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben, “Handbook of X Ray Photoelectron Spectroscopy”, Physical Electronics, 1995-02-01
    Advisor
  • Teng-Shih Shih(施登士)
  • Files
  • 983203105.pdf
  • disapprove authorization
    Date of Submission 2011-07-21

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.