Title page for 983203044


[Back to Results | New Search]

Student Number 983203044
Author Bing-Zu Song(宋秉儒)
Author's Email Address blueonway@yahoo.com.tw
Statistics This thesis had been viewed 600 times. Download 770 times.
Department Mechanical Engineering
Year 2010
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title The Simulation of Thermofluid Characteristics in the Layout of Li-ion Battery Module for Electric Vehicle
Date of Defense 2011-06-23
Page Count 107
Keyword
  • Electric vehicle
  • Electrochemical model
  • Heat transfer
  • Lithium-ion battery
  • Numerical simulation
  • Abstract This paper presents the 3-D numerical simulation of electric vehicle lithium-ion battery module by using computational software FLUENT. The purpose is to develop a reasonable thermal management model for prediction of thermal flow performance of battery module. Three simulation cases are conducted (simplified type, cylindrical and strip cell layout of a complete battery module), and the simplified battery module is designed for validating turbulence model and electrochemical model. In additional, the complete battery module consists of either cylindrical and strip Li-ion cell, and arranged in a staggered layout to yield cooling flow channel. Comparison of heat dissipation of battery module between these two
    cells is also made.
    Three turbulence models are simulated and compared with experimental pressure difference between inlet and exit of battery module, and prediction shows that RNG k-ε model has better accuracy with maximum error of pressure difference 8%. Then, the inlet velocity into the battery module is changed to validate the computed and experimental temperature, and agreement of both results is good within 1oC. Finally, the numerical result shows the flow and temperature pattern characteristics between the cylindrical and strip type of battery module. Overall, the flow inside the cylindrical cell of batter module is unsymmetrical. When the inlet velocity increases to 2 m/s, the flow direction of cylinder shape battery module divert
    to upper left after flow passes through the second row of battery, and this also change the contact point and separation point. On the other hand, the strip type of battery module generates relatively smooth and smaller flow resistance, so it has better dissipation efficiency than that of the cylinder battery module.
    Table of Content 中文摘要............................................................................................................................... i
    英文摘要...............................................................................................................................ii
    誌謝目錄..............................................................................................................................iii
    目錄..................................................................................................................................... iv
    圖目錄................................................................................................................................ vii
    表目錄................................................................................................................................ xii
    符號說明............................................................................................................................xiii
    第一章 緒論......................................................................................................................... 1
    1.1 電動車..................................................................................................................... 1
    1.2 鋰離子電池介紹..................................................................................................... 4
    1.2.1 鋰離子電池特色.......................................................................................... 5
    1.2.2 鋰離子電池原理.......................................................................................... 6
    1.2.3 鋰離子充、放電特性................................................................................... 8
    1.3 鋰離子電池電及熱之特性分析文獻回顧............................................................... 9
    1.3.1 電化學及熱模型模擬鋰離子電池電及熱之特性...................................... 10
    1.3.2 等效電路模擬鋰電池電及熱之特性.......................................................... 11
    1.3.3 實驗量測鋰離子電池熵變化..................................................................... 11
    1.4 鋰電池管理技術................................................................................................... 13
    1.5 研究動機............................................................................................................... 17
    1.6 論文架構............................................................................................................... 18
    第二章 計算分析................................................................................................................ 19
    v
    2.1 計算流體力學基本簡介....................................................................................... 19
    2.1.1 FLUENT 軟體簡介..................................................................................... 19
    2.1.2 離散法則.................................................................................................... 21
    2.1.3 空間離散.................................................................................................... 22
    2.1.4 時間離散.................................................................................................... 23
    2.1.6 速度與壓力之耦合方式............................................................................. 25
    2.2 幾何外型............................................................................................................... 26
    2.3 基本假設............................................................................................................... 29
    2.4 統御方程式........................................................................................................... 30
    2.5 紊流模型............................................................................................................... 30
    2.5.1 標準k-ε 紊流模式.............................................................................................. 31
    2.5.2 RNG k-ε 紊流模式.............................................................................................. 32
    2.5.3 Realizable k-ε 紊流模式...................................................................................... 34
    2.6 壁面函數............................................................................................................... 35
    2.7 鋰離子電池熱-電化學模型.................................................................................. 37
    2.8 邊界條件............................................................................................................... 42
    2.9 計算方法............................................................................................................... 46
    第三章 模擬驗證............................................................................................................... 47
    3.1 網格獨立性測試.................................................................................................... 47
    3.2 不同紊流模型的比較............................................................................................ 50
    3.3 熱流場分析及驗證............................................................................................... 51
    第四章 完整電池模組性能之比較..................................................................................... 59
    4.1 圓柱形及長條形鋰離子電池模組流場分析......................................................... 59
    4.2 圓柱形及長條形鋰離子電池模組溫度場及熱傳性能分析.................................. 70
    第五章 結論....................................................................................................................... 83
    5.1 結論...................................................................................................................... 83
    vi
    5.2 未來改進方向....................................................................................................... 84
    參考文獻............................................................................................................................. 85
    Reference ANSYS, (2009) ANSYS FLUENT user’s guide, ANSYS, Inc.
    Bernardi, E., Pawlikowski, Newman, J., (1985) A general energy balance for battery systems,
    Electrochem. Soc., 132(1):5-12.
    Chen, Y., Evans, J. W., (1993) Heat transfer phenomena in lithium/polymer electrolyte
    batteries for electric vehicle application, J. Electrochem. Soc., 140(7):1833-1838.
    Chen, M., Gabriel, A., Rincon-Mora, (2006) Accurate electrical battery model capable of
    predicting runtime and I–V performance, IEEE Trans. Energy Convers., 21(2):504-511.
    Dhameja, S., (2002) Electric Vehicle Battery Systems, Elsevier.
    Gao, L., Liu S., (2002) Dynamic lithium-ion battery model for system simulation, IEEE Trans.
    Compon. Package. Technol., 25(3):495-505.
    Guoa, G., Longb, B., Chengc, B., Zhoua, S., Xua, P., Caoa, B., (2010) Three-dimensional
    thermal finite element modeling of lithium-ion battery in thermal abuse application, J.
    Power Sources, 195:2393-2398.
    Hallaj, S. A., Maleki, H., Hong, J. S., Selman, J. R., (1999) Thermal modeling and design
    considerations of lithium-ion batteries, J. Power Sources, 83:1-8.
    Hallaj, S. A., Prakash, J., Selman, J. R., (2000) Characterization of commercial Li-ion
    batteries using electrochemical calorimetric measurements, J. Power Sources,
    87:186-194.
    Hong, J. S., Maleki, H., Hallaj, S. A., Redey, L., Selman, J. R., (1998) Electrochemical
    calorimetric studies of lithium-ion cells, J. Electrochem. Soc., 145(5):1489-1501.
    Incropera, F. P., Dewitt, D. P., (2001) Fundamentals of Heat and Mass Transfer, John Wiley &
    Sons, New York.
    Kim, S. E., Choudhury, D., (1995) A near-wall treatment using wall functions sensitized to
    86
    pressure gradient, ASME FED, 217, Separated and Complex Flows.
    Launder, B. E., Spalding, D. B., (1972) Lectures in Mathematical Models of Turbulence,
    Academic Press.
    MOLICEL 技術文件,2009,IMR18650E,產品數據表。
    Michael, A. R., Sauer, D. U., (2011) Dynamic electric behavior and open circuit voltage
    modeling of LiFePO4 based lithium ion secondary batteries, J. Power Sources,
    196:331-336.
    Mills, A., Hallaj, S. A., (2005) Simulation of passive thermal management system for lithium
    ion battery packs, J. Power Sources 141:307-315.
    Nalin, A. C., Reinhardt, K., Jake, C., Jasim, A., Alelsandar, K., (2010) Algorithms for
    advanced battery management systems, IEEE Control Systems Magazine, 30(3):50-68.
    Onda, K., Kameyama, H., Hanamoto, T., Ito, K., (2003) Experimental study on heat
    generation behavior of small lithium ion secondary batteries, J. Electrochemical Society,
    150(3): A285-A291.
    Onda, K., Ohshima, T., Nakayama, M., Fukuda, K., Araki, T., (2006) Thermal behavior of
    small lithium-ion battery during rapid charge and discharge cycles, J. Power Sources,
    158:535-542
    Pesaran, A. A., Vlahinos, A., Burch, S. D., (1997) Thermal performance of EV and HEV
    battery modules and packs, 14th Electric Vehicle Symposium.
    Shih, T. H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J., (1995) A new k-ε eddy-viscosity
    model for high Reynolds number turbulent flows - model development and validation,
    Computers and Fluids, 24(3):227-238.
    Stanescu, G., Fowler, A. J., Bejan, A., (1996) The optimal spacing of cylinders in free-stream
    cross-flow forced convection, Inter. J. Heat Mass Transfer, 39(2):311-317.
    Wolfstein, M., (1969) The velocity and temperature distribution of one-dimensional flow with
    turbulence augmentation and pressure gradient, Int. J. Heat Mass Transfer, 12:301-318.
    87
    Yakhot, V., Orszag, S. A., (1986) Renormalization group analysis of turbulence: I. basic
    theory, J. Scientific Computing, 1(1):1-51.
    Zukauskas, A., (1989) High-Performance Single-Phase Heat Exchangers, Hemisphere Pub.
    林國禎,(2009) 純電動車電池組散熱研究,機械工業雜誌,320 期,42-52 頁。
    吳俊諆、楊建裕,(2010) 電池模組熱流分析,新普科技公司委託研究計畫結案報告。
    洪裕桓,(2005) 智慧型鋰電池管理系統之研製,國立中山大學電機工程學系碩士論文。
    陳欣志,(2004) 鋰電池熱現象之模擬,國立清華大學化學工程研究所博士論文。
    Advisor
  • Jiunn-Chi Wu(吳俊諆)
  • Files
  • 983203044.pdf
  • approve immediately
    Date of Submission 2011-07-13

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.