Title page for 982203012

[Back to Results | New Search]

Student Number 982203012
Author Yu-pei Wu(吳羽珮)
Author's Email Address No Public.
Statistics This thesis had been viewed 676 times. Download 339 times.
Department Chemistry
Year 2010
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title One-step in situ derivatization/extraction coupled with microwave- assisted HS-SPME to detect alkylphenols in aqueous samples
Date of Defense 2011-06-21
Page Count 91
  • alkylphenols
  • in situ derivatization
  • microwave- assisted
  • Abstract 4-tert-octylphenol (4-t-OP) and 4-nonylphenol isomers (4-NPs) are two persistent degradation products from widely used nonionic surfactants alkylphenol polyethoxylates (APEOs). They have been demonstrated to exhibit the ability to mimic natural hormones. The large-scale usage of surfactants and increasing public concern over environmental issues has stimulated our interest to investigate their occurrence and behavior in the environment.
    The present study described a rapid and solvent-free procedure for the determination of 4-t-OP and 4-NPs in water samples by one-step in situ acetylated coupled with microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) prior to their determination using gas chromatography-mass spectrometry (GC-MS). The effects of various derivatization and extraction parameters were systematically investigated and optimized. Under optimized conditions, 300 μL of acetic anhydride mixed with 1 g of KHCO3 and 2 g of NaCl in a 20-mL water sample (in a 40-mL sample-bottle) were efficiently extracted by a 65 μm polydimethylsiloxane -divinylbenzene (PDMS-DVB) fiber placed in the headspace when the system was microwave irradiated at 80 W for 5 min. The limits of quantification (LOQs) were 5 and 50 ng/L for 4-t-OP and 4-NPs, respectively. The precision for these analytes, as indicated by relative standard deviations (RSDs), were less than12.9 % for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was between 49.9 – 81.8 % and 27.7 – 63.2 % for 4-t-OP and 4-NPs, respectively. A standard addition method was used to quantitate 4-t-OP and 4-NPs, and the concentrations ranged from 142.9 to 579.8 ng/L and 124.8 to 933.8 ng/L for 4-t-OP and 4-NPs, respectively in various environmental samples. This in situ acetylated MA-HS-SPME appears to be a good alternative extraction method for the determination of 4-t-OP and 4-NPs in environmental samples; it is a simple, effective, low-cost, and eco-friendly analytical method.
    Table of Content 目錄
    第一章 前言1
    1-1 研究緣起1
    1-2 研究目標4
    第二章 文獻回顧5
    2-1 環境荷爾蒙5
    2-1-1 何謂環境荷爾蒙5
    2-1-2 環境荷爾蒙的作用機制6
    2-1-3 烷基酚類化合物7
    2-1-4 烷基酚類化合物毒性10
    2-1-5 環境中烷基酚類化合物的含量17
    2-1-6 人體暴露之風險評估18
    2-1-7 相關研究文獻21
    2-2 微波23
    2-2-1 微波簡介23
    2-2-2 加熱原理24
    2-2-3 微波裝置26
    2-2-4 相關應用28
    2-3 固相微萃取法30
    2-4 衍生化技術36
    2-4-1 乙醯化衍生法36
    2-5 氣相層析質譜儀38
    2-5-1 離子阱質譜儀41
    2-6 標準添加法42
    第三章 實驗步驟與樣品分析44
    3-1 實驗藥品與設備44
    3-1-1 實驗藥品44
    3-1-2 儀器設備45
    3-2 實驗步驟46
    3-2-1 標準品的配製46
    3-2-2 氣相層析質譜儀的參數設定46
    3-2-3 MA-HS-SPME裝置48
    3-2-4 操作流程48
    3-3 水樣採集50
    3-4 真實樣品檢測定量51
    第四章 結果與討論52
    4-1 氣相層析質譜儀對烷基酚類化合物的測定52
    4-1-1 烷基酚類化合物的分析52
    4-1-2 儀器的偵測極限52
    4-2 乙醯化衍生條件的最佳化57
    4-3 微波輔助萃取條件最佳化59
    4-4 固相微萃取法的條件最佳化62
    4-4-1 萃取纖維的種類62
    4-4-2 熱脫附溫度63
    4-4-3 熱脫附時間65
    4-4-4 NaCl添加量66
    4-5 微波輔助頂空固相微萃取法搭配乙醯化衍生的最佳化結果68
    4-6 微波輔助頂空固相微萃取法搭配乙醯化衍生之檢量線69
    4-7 真實水樣定量71
    第五章 結論與建議78
    5-1 結論78
    5-2 建議78
    第六章 參考文獻79

    圖1-1. 雌激素與壬基酚化合物的結構3
    圖2-1. 環境荷爾蒙與天然荷爾蒙的關係圖7
    圖2-2. 烷基酚聚乙氧基醇類非離子型界面活性劑之結構9
    圖2-3. 烷基酚類化合物的結構10
    圖2-4. 烷基酚聚乙氧基醇類於環境中降解的途徑11
    圖2-5. 一般電磁波頻率範圍示意圖24
    圖2-6. 微波加熱原理示意圖27
    圖2-7. 微波加熱與傳統加熱法的比較示意圖28
    圖2-8. 固相微萃取裝置圖31
    圖2-9. 固相微萃取法的操作過程32
    圖2-10. 固相微萃取塗覆固定相的種類與性質34
    圖2-11. 乙醯化衍生反應37
    圖2-12. 氣相層析儀構造圖39
    圖2-13. 質譜儀構造圖39
    圖2-14. 離子阱結構圖41
    圖2-15. 標準添加法操作圖43
    圖2-16. 標準添加法檢量線43
    圖3-1. MA-HS-SPME裝置圖48
    圖4-1. 烷基酚類化合物的質譜圖53
    圖4-2. 衍生前後的汲取質量層析圖54
    圖4-3. 衍生前後的效果比較55
    圖4-4. 烷基酚類化合物的汲取質量層析圖56
    圖4-5. 乙醯化衍生條件對萃取量的影響58
    圖4-6. 加熱瓦數與萃取時間對萃取量的影響61
    圖4-7. 萃取纖維對萃取量的影響63
    圖4-8. 脫附溫度對脫附量的影響64
    圖4-9. 脫附時間對脫附量的影響66
    圖4-10. NaCl添加量對萃取量的影響67
    圖4-11. 微波輔助頂空固相微萃取法搭配乙醯化衍生之檢量線70
    圖4-12. 竹科放流口的汲取質量層析圖72
    圖4-13. 老街溪的汲取質量層析圖73
    圖4-14. 百花川上游的汲取質量層析圖73
    圖4-15. 百花川中游的汲取質量層析圖74
    圖4-16. 百花川下游的汲取質量層析圖74

    表2-1. 烷基酚類化合物的相關性質9
    表2-2. 烷基酚類化合物在水生生物的BCF值(WET WEIGHT)14
    表2-3. 壬基酚的急毒性表15
    表2-4. 辛基酚的急毒性與慢毒性表16
    表2-5. 各國廢汙水廠放流水之烷基酚濃度17
    表2-6. 各國河水之烷基酚濃度18
    表2-7. 液態樣品的萃取方法22
    表3-1. 整合離子層析模式下定量離子47
    表4-1. 烷基酚類化合物之儀器偵測極限與線性關係56
    表4-2. KHCO3與ACETIC ANHYDRIDE之衍生條件58
    表4-3. 加熱瓦數與時間之萃取條件60
    表4-4. 烷基酚類化合物的偵測極限與線性關係70
    表4-5. 環境樣品的電導度值72
    表4-6. 標準添加法所得的線性關係75
    表4-7. 方法的穩定性與再現性76
    表4-8. 本實驗方法與其他文獻的比較77
    Reference 1王正雄、張小萍、李宜樺、黃壬瑰、陳佩珊、洪文宗:台灣地區擬似環境荷爾蒙物質管理及環境流布調查,微生物與環境荷爾蒙研討會論文集,第1-29頁,民國89年。
    2王正雄:環境荷爾蒙--地球村 二十一世紀之熱門課題,科學知識,第51期,第18-23頁,民國89年。
    10Auriol, M.; Filalimeknassi, Y.; Tyagi, R.; Adams, C.; Surampalli, R., Endocrine disrupting compounds removal from wastewater, a new challenge, Process Biochem., 2006, 41, 525-539.
    11Bianco, M.; Mita, L.; Portaccio, M.; Diano, N.; Sica, V.; De Luca, B.; Mita, D.G.; Carratelli, C.R.; Viggiano, E., Differential accumulation levels in the brain of rats exposed to the endocrine disruptor 4-tert-octylphenol (OP), Environ. Toxicol. Pharmacol., 2011, 31, 198-204.
    12Chen, G.-W.; Ding, W.-H.; Ku, H.-Y.; Chao, H.-R.; Chen, H.-Y.; Huang, M.-C.; Wang, S.-L., Alkylphenols in human milk and their relations to dietary habits in central Taiwan. Food and Chemical Toxicology, 2010, 48, 1939-1944.
    13Diaz, A.; Ventura, F., Simultaneous Determination of Estrogenic Short Ethoxy Chain Nonylphenols and Their Acidic Metabolites in Water by an In-Sample Derivatization/Solid-Phase Microextraction Method, Anal. Chem., 2002, 74, 3869-3876.
    14Ferrara, F.; Ademollo, N.; Orru, M.A.; Silvestroni, L.; Funari, E., Alkylphenols in adipose tissues of Italian population, Chemosphere, 2011, 82, 1044-1049.
    15Gong, Y.; Wu, J.; Huang, Y.; Shen, S.; Han, X., Nonylphenol induces apoptosis in rat testicular Sertoli cells via endoplasmic reticulum stress, Toxicol. Lett., 2009, 186, 84-95.
    16Harris, D.C., Quantitative chemical analysis, 6th ed., W.H. Freeman and Company, 2002.
    17Hong, L.; Li, M.H., Acute Toxicity of 4-Nonylphenol to Aquatic Invertebrates in Taiwan, Bull. Environ. Contam. Toxicol., 2007, 78, 445-449.
    18Hagiwara, H.; Sugizaki, T.; Tsukamoto, Y.; Senoh, E.; Goto, T.; Ishihara, Y., Effects of alkylphenols on bone metabolism in vivo and in vitro, Toxicol. Lett., 2008, 181, 13-18.
    19Jobling, S.; Sumpter, J.P., Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study suing rainbow trout (Oncorhynchus mykiss) hepatocytes, Aquat Toxicol, 1993, 27, 361-372.
    20Kingston, H.M.; Jassie, L.B., Introduction to microwave sample preparation: Theory and practice, American Chemical Society, 1988, 7-31.
    21Kataoka, H.; Lord, H.L.; Pawliszyn, J., Applications of solid-phase microextraction in food analysis, J. Chromatogr. A, 2000, 880, 35-62.
    22Lee, H.; Peart, T.; Svoboda, M., Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry, J. Chromatogr. A, 2005, 1094, 122-129.
    23Lu, Y.-Y.; Chen, M.-L.; Sung, F.-C.; Paulus Shyi-Gang, W.; Mao, I.F., Daily intake of 4-nonylphenol in Taiwanese, Environ. Int., 2007, 33, 903-910.
    24Lopez-Espinosa, M.J.; Freire, C.; Arrebola, J.P.; Navea, N.; Taoufiki, J.; Fernandez, M.F.; Ballesteros, O.; Prada, R.; Olea, N., Nonylphenol and octylphenol in adipose tissue of women in Southern Spain, Chemosphere, 2009, 76, 847-852.
    25Luo, S.; Fang, L.; Wang, X.; Liu, H.; Ouyang, G.; Lan, C.; Luan, T., Determination of octylphenol and nonylphenol in aqueous sample using simultaneous derivatization and dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry, J. Chromatogr. A, 2010, 1217, 6762-6768.
    26Müller, S.; Schmid, P.; Schlatter, C., Pharmacokinetic behavior of 4-nonylphenol in humans, Environ. Toxicol. Pharmacol., 1998, 6, 27-33.
    27Müller, S.; Schmid, P.; Schlatter, C., Evaluation of the estrogenic potency of nonylphenol in non-occupationally exposed humans, Environ. Toxicol. Pharmacol., 1998b, 6, 27-33.
    28Markey, C.M.; Michaelson, C.L.; Sonnenschein, C.; Soto, A.M., Alkylphenols and Bisphenol A as Environmental Estrogens, The Handbook of Environmental Chemistry, 2001, 3, 131-153.
    29Martínez-Uruñuela, A.; González-Sáiz, J.M.; Pizarro, C., Optimisation of the derivatisation reaction and subsequent headspace solid-phase microextraction method for the direct determination of chlorophenols in red wine, J. Chromatogr. A, 2004, 1048, 141-151.
    30Pawliszyn, J., New direction in sample preparation for analysis of organic compounds, Trends Anal. Chem., 1995, 14, 113-122.
    31Petrovic, M.; Radjenovic, J.; Postigo, C.; Kuster, M.; Farre, M.; Alda, M.L.; Barceló, D., Emerging Contaminants in Waste Waters: Sources and Occurrence, The Handbook of Environmental Chemistry, 2008, 5S/1, 1-35.
    32Pan, Y.; Tsai, S., Solid phase microextraction procedure for the determination of alkylphenols in water by on-fiber derivatization with N-tert-butyl-dimethylsilyl-N-methyltrifluoroacetamide, Anal. Chim. Acta, 2008, 624, 247-252.
    33Regueiro, J.; Becerril, E.; Garcia-Jares, C.; Llompart, M., Trace analysis of parabens, triclosan and related chlorophenols in water by headspace solid-phase microextraction with in situ derivatization and gas chromatography–tandem mass spectrometry, J. Chromatogr. A, 2009, 1216, 4693-4702.
    34Skoog, D.A.; Holler, F.J.; Crouch, S.R., Principles of instrumental analysis, 6th ed., Thomson Learning, 2007.
    35Soares, A.; Guieysse, B.; Jefferson, B.; Cartmell, E.; Lester, J.N., Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters, Environ. Int., 2008, 34, 1033-1049.
    36Spehar, R.L.; Brooke, L.T.; Markee, T.P.; Kahl, M.D., Comparative toxicity and bioconcentration of nonylphenol in freshwater organisms, Environ. Toxicol. Chem., 2010, 29, 2104-211.
    37Sterckx, F.L.; Saison, D.; Delvaux, F.R., Determination of volatile monophenols in beer using acetylation and headspace solid-phase microextraction in combination with gas chromatography and mass spectrometry, Anal. Chim. Acta, 2010, 676, 53-59.
    38Sánchez-Avila, J.; Quintana, J.; Ventura, F.; Tauler, R.; Duarte, C.M.; Lacorte, S., Stir bar sorptive extraction-thermal desorption-gas chromatography–mass spectrometry: An effective tool for determining persistent organic pollutants and nonylphenol in coastal waters in compliance with existing Directives, Mar. Pollut. Bull., 2010, 60, 103-112.
    39Sainath, S.B.; Meena, R.; Venkata Suneel Kumar, C.H.; Kalapana, P.; Swetha, K.N.; Syamala Devi, N.; Sreenivasula Reddy, P., Embryonic exposure to octylphenol induces changes in testosterone levels and disrupts reproductive efficiency in rats at their adulthood, Food Chem. Toxicol, 2011, 49, 983-990.
    40United Nations Environment Programme, http://www.unep.org/publications/
    41Vega Morales, T.; Torres Padrón, M.E.; Sosa Ferrera, Z.; Santana Rodríguez, J.J., Determination of alkylphenol ethoxylates and their degradation products in liquid and solid samples, Trends Anal. Chem., 2009, 28, 1186-1200.
    42WHO: Integrated risk assessment: nonylphenol case study, Report prepared for the WHO/UNEP/ILO international programme on chemical safety, WHO/IPCS/IRA/12/04, WHO, Geneva, Switzerland, 2004.
    43Ying, G.; Williams, B.; Kookana, R., Environmental fate of alkylphenols and alkylphenol ethoxylates—a review, Environ. Int., 2002, 28, 215-226.
    44Ying, G., Fate, behavior and effects of surfactants and their degradation products in the environment, Environ. Int., 2006, 32, 417-431.
    45Yang, L.; Luan, T.; Lan, C., Solid-phase microextraction with on-fiber silylation for simultaneous determinations of endocrine disrupting chemicals and steroid hormones by gas chromatography–mass spectrometry, J. Chromatogr. A, 2006, 1104, 23-32.
    46Zgoła-Grze’skowiak, A., Dispersive liquid–liquid microextraction applied to isolation and concentration of alkylphenols and their short-chained ethoxylates in water samples, J. Chromatogr. A, 2010, 1217, 1761-1766.
  • Wang-hsien Ding(丁望賢)
  • Files
  • 982203012.pdf
  • approve in 2 years
    Date of Submission 2011-06-23

    [Back to Results | New Search]

    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.