Title page for 975201004


[Back to Results | New Search]

Student Number 975201004
Author Ming-chih Tsai(蔡明志)
Author's Email Address No Public.
Statistics This thesis had been viewed 498 times. Download 304 times.
Department Electrical Engineering
Year 2010
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Analysis and Design of a 64-Channel Electrical Stimulator and Impedance Measurement Circuitry for Implantable Biomedical Systems
Date of Defense 2011-06-14
Page Count 94
Keyword
  • electrical stimulator
  • impedance measurement
  • time-to-digital converter
  • Abstract  This thesis aims to design a multi-channel electrical stimulator and impedance measurement system for implanted visual prosthesis. The motivation comes from retinitis pigmentosa (RP) and age-related macular degradation (AMD) both lead to photoreceptor degeneration and result in a significant visual deficit individual. In a healthy retina, the photoreceptors initiate a neural signal in response to light. In a retina with photoreceptor loss, a successful elicitation in visual perception will be possible by using electrical stimulation on retina or visual cortex by the visual prosthesis. In this paper, we design an electrical stimulator which is capable of 64-channel stimulation.
     The designed electrical stimulator stimulates nerves or muscles using electrodes as the interface. Due to the interface we implanted are not a flat surface, the electrode-tissue interface might have poor contact. Or the electrode size and material differences, electrode-self by stimulus current and environment factors, and so on. The impedance between electrode and tissue will be change. On account of these problems, a long term observation is required. Therefore, we designed an impedance measurement system with time-to-digital converter (TDC) to observe the status of electrode-tissue interface after implantation. It is useful for evaluating the effect on stimulation and adjustment of stimulus parameters.
    Table of Content 摘要i
    Abstractii
    致謝iii
    目錄iv
    圖目錄vii
    表目錄ix
    第一章緒論1
    1.1研究背景1
    1.2研究動機3
    1.3論文架構3
    第二章植入式功能性電刺激系統4
    2.1植入式功能性電刺激的應用4
    2.2植入式視覺輔具5
    2.2.1視覺的生成6
    2.2.2利用電刺激產生視覺反應7
    2.2.3無線視覺輔具系統9
    2.3電刺激模式與參數10
    2.3.1電刺激模式11
    2.3.2電刺激參數13
    2.4論文中整體電路架構16
    第三章六十四通道電刺激器之設計17
    3.1刺激電流產生器電路設計18
    3.1.1數位類比轉換器規格考量18
    3.1.2二位元權重數位類比轉換器19
    3.2H型切換器24
    3.3電刺激器電路架構26
    3.4六十四通道電刺激器之設計考量28
    第四章阻抗量測電路設計30
    4.1阻抗量測電路架構30
    4.2儀表放大器31
    4.2.1傳統式儀表放大器32
    4.2.2電流模式儀表放大器34
    4.3類比數位轉換器之介紹36
    4.3.1單斜率類比數位轉換器(Single Slope ADC)36
    4.3.2雙斜率類比數位轉換器(Dual Slope ADC)36
    4.3.3連續近似類比數位轉換器(Successive Approximation ADC)38
    4.3.4快閃式類比數位轉換器(Flash ADC)39
    4.4具有時間數位轉換器之阻抗量測電路40
    4.4.1電路動作原理40
    4.4.2電壓時間轉換器42
    4.4.3時間數位轉換器47
    4.5電路設計考量與規格制定53
    4.5.1儀表放大器的輸出53
    4.5.2電壓時間轉換器53
    4.5.3時間數位轉換器54
    第五章電路模擬與晶片量測55
    5.1電刺激器模擬結果55
    5.1.1單通道電刺激器模擬結果55
    5.1.2數位控制電路58
    5.1.3六十四通道電刺激器59
    5.2阻抗量測電路模擬與量測結果63
    5.2.1佈局後模擬結果(Post-Layout Simulation)63
    5.2.2佈局考量70
    5.2.3量測考量72
    5.2.4量測結果74
    5.3文獻比較75
    第六章結論與未來展望77
    6.1結論77
    6.2未來展望77
    參考文獻79
    Reference [1]W. T. Liberson, H. J. Holmquest, D. Scot, and M. Dow, “Functional electrotherapy: stimulation of peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients,” Archives of Physical Medicine and Rehabilitation, vol. 42, pp. 101-105, Feb. 1961.
    [2]A. Kralj, T. Bajd, R. Turk, J. Krajnik, and H. Benko, “Gait restoration in paraplegic patients: a feasibility demonstration using multichannel surface electrode FES,” Journal of Rehabilitation R&D, vol. 20, pp. 3-20, Jul. 1983.
    [3]C. W. Caldwell and J. B. Reswick, “A percutaneous wire electrode for chronic research use,” IEEE Transactions on Bio-Medical Engineering, vol. 22, no.5, pp. 429-432, Sep. 1975.
    [4]D. R. McNeal, R. J. Nakai, P. Meadows, and W. Tu, “Open-loop control of the freely-swinging paralyzed leg,” IEEE Transactions on Bio-Medical Engineering, vol. 36, no. 9, pp.895-905, Sep. 1989.
    [5]M. Mahadevappa, J. D. Weiland, D. Yanai, I Fine, R. J. Greenberg, and M. S. Humayun, “Perceptual thresholds and electrode impedance in three retinal prosthesis subjects,” IEEE Transactions on Neural Systems Rehabilitation Engineering, vol. 13, no. 2, pp. 201-206, Jun. 2005.
    [6]A. P. Chu, K. Morris, R. J. Greenberg, and D. M. Zhou, “Stimulus induced pH changes in retinal implant,” IEEE Engineering in Medicine and Biology Society Conference, vol. 2, pp. 4160-4162, Sep. 2004.
    [7]L. S. Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas, “A very low-power CMOS mixed-signal IC for implantable pacemaker applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2446-2456, Dec. 2004.
    [8]J. Georgiou and C. Toumazou, “A 126-μW cochlear chip for a totally implantable system,” IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 430-443, Feb. 2005.
    [9]S. K. Kelly and J. Wyatt, “A power-efficient voltage-based neural tissue stimulator with energy recovery,” IEEE Solid-State Circuits Conference, pp. 228-230, Feb. 2004.
    [10]M. Ghovanloo, “Switched-capacitor based implantable low-power wireless microstimulating systems,” IEEE International Symposium on Circuits and Systems, pp. 2197-2200, May 2006.
    [11]M. Sivaprakasam, W. Liu, G. Wang, J. D. Weiland, and M. S. Humayum, “Architecture tradeoffs in high-density microstimulators for retinal prosthesis,” IEEE Transactions on Circuits and Systems, Reg. Papers, vol. 52, no. 12, pp. 2629-2641, Dec. 2005.
    [12]https://www.blindness.org
    [13]http://webvision.med.utah.edu
    [14]J. D. Weiland and M. S. Humayun, “Intraocular retinal prosthesis,” IEEE Engineering Medicine and Biology Magazine, vol. 25, pp. 60-66, Sep. 2006.
    [15]J. D. Weiland, D. Yanai, M. Mahadevappa, R. Williamson, B. V. Mech, G. Y. Fujii, J. Little, R. J. Greenberg, E. de Juan Jr., and M. S. Humayun, “Electrical stimulation of retina in blind humans,” IEEE Engineering in Medicine and Biology Society Conference, vol. 3, pp. 2021-2022, Sep. 2003.
    [16]P. Hossain, I. W. Seetho, A. C. Browning, and W. M. Amoaku, “Artificial means for restoring vision,” BMJ, vol. 330, pp. 30-33, Jan. 2005.
    [17]K. Cha, K. W. Horch, R. A. Normann, and D. K. Boman, “Reading speed with a pixelized vision system,” Journal of the Optical Society of America. A, vol. 9, no. 5, pp. 673-677, May 1992.
    [18]R. W Thompson, G. D. Barnett, M. S. Humayun, and G. Dagnelie, “Facial recognition using simulated prosthetic pixelized vision,” Investigative Ophthalmology and Visual Science, vol. 44, no. 11, pp. 5035-5042, Nov. 2003.
    [19]M. Sivaprakasam, W. Liu, M. S. Humayun, and J. D. Weiland, “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 763-771, Mar. 2005.
    [20]J. D. Weiland and M. S. Humayun, “A biomimetic retinal stimulating array: design considerations,” IEEE Engineering Medicine and Biology Magazine, vol. 24, no. 12, pp. 14-21, Sep. 2005.
    [21]S. C. DeMarco, W. Liu, P. R. Singh, G. Lazzi, M. S. Humayun, and J. D. Weiland, “An arbitrary waveform stimulus circuit for visual prostheses using a low-area multibias DAC,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1679-1690, Oct. 2003.
    [22]B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
    [23]D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
    [24]W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. Juan, J. D. Weiland, and R. Greenberg, “A neuro-stimulus chip with telemetry unit for retinal prosthetic device,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1487-1497, Oct. 2000.
    [25]A. B. Majji, M. S. Humayun, J. D. Weiland, S. Suzuki, S. A. D’Anna, and E. de Juan Jr., “Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs,” Investigative Ophthalmology and Visual Science, vol. 40, no. 9, pp. 2073-2081, Aug. 1999.
    [26]A. S. Sedra and K. C. Smith, “Microelectronic circuits,” 5th ed. New York: Oxford, Aug. 2007.
    [27]A. Harb and M. Sawan, “New low-power low-voltage high-CMRR CMOS instrumentation amplifier,” IEEE International Symposium on Circuits and Systems, vol. 6,pp. 97-100, May 1999.
    [28]P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford University Press, 2002.
    [29]C. H. Kuo, S. L. Chen, and S. I. Liu, “Magnetic-field-to-digital converter using PWM and TDC techniques,” IEE Proceedings of Circuits, Devices and Systems, vol. 153, no. 3, pp. 247-252, Jun. 2006.
    [30]P. Chen, S. L. Liu, and J. Wu, “A CMOS pulse-shrinking delay element for time interval measurement,” IEEE Transactions on Circuits and Systems, vol. 47, no. 9, pp. 954-958, Sep. 2000.
    [31]S. Rajapandian, K. Shepard, P. Haxucha, and T. Karnik, “High-tension power delivery: Operating 0.18μm CMOS digital logic at 5.4V,” IEEE Solid-State Circuits Conference, vol. 1, pp. 298-599, Feb. 2005.
    [32]C. T. Chiang and C. Y. Wu, “Implantable neuromorphic vision chips,” IET Electronics Letters, vol. 40, pp. 361-363, Mar. 2004.
    [33]I. T. Mohammad, S. Pepe, and W. A. Gregory, “Implantable CMOS-based Stimulator/Reader Design for Retinal Prosthesis,” Conference on Microtechnology in Medicine and Biology, 3rd IEEE/EMBS, pp. 94-97, May. 2005.
    [34]P. Nadeau and M. Sawan, “A flexible high voltage biphasic current-controlled stimulator,” IEEE International Symposium on Circuits and Systems, pp. 206-209, Nov. 2006.
    [35]G. Lesbros and M. Sawan, “Multiparameters monitoring for long term in-vivo characterization of electrode-tissues contacts,” IEEE International Symposium on Circuits and Systems, pp. 25-28, Dec. 2006.
    [36]A. Harb, Y. Hu, M. Sawan, A. Abdelkerim, and M. M. Elhilali, “Low-power CMOS interface for recording and processing very low amplitude signals,” Analog Integrated Circuits and Signal Processing, vol. 39, pp. 39-54, Mon. 2004.
    [37]C. C. Wang, C. C. Huang, Y. C. Liu, V. Pikov, and D. Shmilovitz, “A mini-invasive multi-function biomedical pressure measurement system ASIC,” IEEE International Symposium on Circuits and Systems, pp. 2936-2939, May 2010.
    [38]W. Qu, S. K. Islam, M. R. Mahfouz, M. R. Haider, G. To, and S. Mostafa, “Microcantilever array pressure measurement system for biomedical instrumentation,” IEEE Sensors Journal, vol. 10, no. 2, pp. 321-330, Feb. 2010.
    [39]P. Napolitano, A. Moschitta, P. Carbone, “A survey on time interval measurement techniques and testing methods,” IEEE Transactions on Instrumentation and Measurement, pp. 181-186, May. 2010.
    Advisor
  • Muh-tian Shiue(薛木添)
  • Files
  • 975201004.pdf
  • approve in 2 years
    Date of Submission 2011-07-25

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.