Title page for 973208018


[Back to Results | New Search]

Student Number 973208018
Author Chia-lin Tsai(蔡佳霖)
Author's Email Address No Public.
Statistics This thesis had been viewed 1031 times. Download 280 times.
Department Energy of Mechatronics
Year 2009
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title The study of quaternary compound photoelectrode thin film by chemical bath deposition
Date of Defense 2010-07-07
Page Count 173
Keyword
  • Chemical bath deposition
  • Hydrogen
  • Photoelectrochemical
  • Photoelectrode
  • Quaternary compound
  • Abstract   Chemical bath deposition (CBD) is applied to deposit Ag-In-S-Se quaternary compound photoelectrode thin film on indium tin oxide coated glass (ITO), which can then be used as the photoelectrode in photoelectrochemical production of hydrogen. The advantages of chemical bath deposition are simple, inexpensive and large area deposition. Besides, Ag-In-S-Se quaternary compound can absorb ultraviolet and visible light so that it has potential to develope. In our experiment, we investigate the crystal structure, morphology, optic property, and PEC performance as precursor ratio, bath temperature, ph value, number of thin film, stirring rate, thermal treatment temperature and atomic percentage of selenium are changed. The results of XRD and EDS show that AgIn5S8 is obtained when [Ag+]/[In3+] =1/5 and transformed to AgIn5S8-xSex quaternary compound by doping selenium with the direct band gap decreasing from 1.79 eV to the range of 1.75~1.786 eV. Both are identified as n-type semiconductor according to Mott-Schottky measurement with decreasing flat band potential from -0.78 V to -0.93 V(vs. Ag/AgCl) and increasing carrier density from 2.58×10^10 cm-3 to 2.83×10^12 cm-3. In PEC measurement, we use 0.25M K2SO3 and 0.35M Na2S as sacrificial reagent and 100 mW/cm2(AM 1.5G) simulation sunlight as light source. The photocurrent density of AgIn5S8 and AgIn5S7.992Se0.008 is 0.8 mA/cm2 and 1.15 mA/cm2 with an external voltage of 0V(vs. Ag/AgCl) respectively. Moreover, the result of stability test shows that photocorrosion phenomenon is inhibited by covering TiO2 on AgIn5S8-xSex photoelectrode thin film, and reduces 3.57% decay of photocurrent density.
    Table of Content 第一章 緒論1
    1.1 前言1
    1.2 光電極3
    1.3 太陽能光譜3
    1.4 光電化學產氫機制5
    1.5 化學浴沉積法7
    1.6 AgIn5S8可見光光電極薄膜9
    1.7 TiO2光電極薄膜9
    1.8 文獻回顧10
    1.8.1 化學浴沉積法文獻回顧10
    1.8.2 光觸媒文獻回顧12
    1.8.3 TiO2光電極薄膜文獻回顧13
    1.8.4 Ag-In-S三元化合物光電極薄膜文獻回顧13
    1.8.5 摻雜金屬元素文獻回顧16
    1.8.6 複合光電極薄膜文獻回顧16
    1.9 研究目的17
    第二章 化學浴沉積法原理18
    2.1 溶解度積和離子濃度積之概念18
    2.2 成長機制21
    2.3 薄膜的成長過程22
    第三章 實驗步驟與方法25
    3.1 實驗參數設定25
    3.2 實驗藥品與實驗裝置25
    3.2.1 實驗藥品25
    3.2.1.1 AgIn5S8-xSex反應鍍液(Ag+、In3+、S2-、Se4+)使用之藥品25
    3.2.1.2 TiO2反應鍍液(Ti4+、O2-)使用之藥品27
    3.2.1.3 薄膜電性分析時配製電解質溶液之使用藥品27
    3.2.2 實驗基材28
    3.2.3 實驗設備28
    3.3 實驗步驟28
    3.3.1 清洗基材28
    3.3.2 鍍液調配29
    3.3.2.1 AgIn5S8-xSex光電極薄膜鍍液調配29
    3.3.2.2 TiO2光電極薄膜鍍液調配30
    3.3.3 反應鍍液配製與鍍膜31
    3.3.3.1 AgIn5S8-xSex光電極薄膜反應鍍液配製與鍍膜31
    3.3.3.2 TiO2光電極薄膜反應鍍液配製與鍍膜32
    3.3.3.3 TiO2-AgIn5S8-xSex複合光電極薄膜反應鍍液配製與鍍膜32
    3.3.4 薄膜之後處理33
    3.3.4.1 AgIn5S8-xSex光電極薄膜之後處理33
    3.3.4.2 TiO2光電極薄膜之後處理33
    3.4 薄膜物性量測分析34
    3.4.1 XRD(X-ray Diffraction, X光粉末繞射儀)34
    3.4.2 SEM(Scanning electron microscope, 掃描式電子顯微鏡)35
    3.4.3 EDS(Energy Dispersive Spectrometer, 能量散射光譜儀)35
    3.4.4 UV-visible(紫外/可見光光譜儀)36
    3.4.5 光電化學性質量測分析36
    3.4.5.1 光電流值36
    3.4.5.2 平帶電壓38
    3.4.5.3 穩定性測試39
    3.4.6 Alpha step(薄膜厚度輪廓測度儀)40
    第四章 結果與討論41
    4.1 AgIn5S8光電極薄膜製備42
    4.1.1 反應物濃度比例42
    4.1.2 水浴溫度對薄膜的影響43
    4.1.3 pH值(硝酸量)對薄膜的影響47
    4.1.4 鍍層層數對薄膜的影響50
    4.1.5 磁石轉速對薄膜的影響53
    4.1.6 熱處理溫度對薄膜的影響55
    4.2 AgIn5S8-xSex光電極薄膜製備58
    4.3 TiO2光電極薄膜製備61
    4.4 TiO2-AgIn5S7.992Se0.008複合光電極薄膜製備62
    4.5 穩定性測試64
    第五章 結論與未來展望66
    5.1 結論66
    5.2 未來規劃67
    參考文獻68

    表目錄
    表1-1 熱值比較表76
    表1-2 銳鈦礦與金紅石之物理性質比較76
    表1-3 氧化物光觸媒於犧牲試劑下之產氫與產氧活性77
    表1-4 可見光的硫化物光觸媒於犧牲試劑下之產氫活性77
    表2-1 溶解度常數表78
    表3-1 AgIn5S8反應溶液參數表79
    表3-2 硒離子摻雜溶液參數表79
    表3-3 TiO2反應溶液參數表79
    表3-4 量測電性分析所需配製之溶液參數表80
    表3-5 實驗分析種類與所使用之檢測儀器80
    表4-1 AgIn5S8所探討之實驗參數81
    表4-2 TiO2所探討之實驗參數81
    表4-3 各參數之薄膜厚度82

    圖目錄
    圖1-1 為各種產氫方式之分類83
    圖1-2 光觸媒反應與應用示意圖83
    圖1-3 太陽能光譜84
    圖1-4 空氣質量84
    圖1-5 光電化學電解水之示意圖85
    圖1-6 兩電極還沒進行迦凡尼接觸之能量圖85
    圖1-7 兩電極進行迦凡尼接觸後之能量圖(無光照射)86
    圖1-8 兩電極進行迦凡尼接觸後之能量圖(有光照射)86
    圖1-9 在陽極施加偏壓之後之能量圖(有光照射)87
    圖1-10 化學水浴法沉積過程示意圖87
    圖1-11 銳鈦礦與金紅石之晶體結構88
    圖1-12 (CuAg)xIn2x Zn2(1-2x)S2 (X=0.01 - 0.3)88
    圖1-13 價帶中不同軌域之分佈圖89
    圖1-14 於犧牲試劑中電解水之半反應示意圖89
    圖1-15 改變能帶結構之方法示意圖90
    圖2-1 化學水浴法成長機制90
    圖2-2 化學水浴法薄膜成長階段示意圖91
    圖3-1 光觸媒薄膜製作流程與性質分析91
    圖3-2 ITO基材清洗流程圖92
    圖3-3 ITO基材封裝後之試片組92
    圖3-4 金屬陽離子溶液調配流程圖93
    圖3-5 用於摻雜之硒離子溶液調配流程圖93
    圖3-6 未摻雜之反應溶液配置與鍍膜流程圖94
    圖3-7 試片於鍍液瓶中之示意圖94
    圖3-8 鍍膜過程示意圖95
    圖3-9 摻雜硒之反應溶液配置與鍍膜流程圖95
    圖3-10 熱處理之升溫速率96
    圖3-11 布拉格繞射示意圖96
    圖3-12 光電化學量測試片之製作示意圖97
    圖4-1 陽離子溶液中不同[Ag]/[In]比例之XRD分析圖譜97
    圖4-2 不同水浴溫度之反應時間與示意圖98
    圖4-3 水浴溫度之XRD分析圖譜98
    圖4-4 水浴溫度之穿透率99
    圖4-5 水浴溫度之反射率99
    圖4-6 水浴溫度之吸收係數100
    圖4-7 水浴溫度之直接能隙100
    圖4-8 水浴溫度50℃之SEM圖(×50k)101
    圖4-9 水浴溫度65℃之SEM圖(×50k)101
    圖4-10 水浴溫度80℃之SEM圖(×50k)102
    圖4-11 硝酸量之XRD分析圖譜102
    圖4-12 不同反應時間相對於薄膜厚度之關係圖[55]103
    圖4-13 pH值相對於薄膜膜厚之關係圖[56]103
    圖4-14 硝酸量之穿透率104
    圖4-15 硝酸量之反射率104
    圖4-16 硝酸量之吸收係數105
    圖4-17 硝酸量之直接能隙105
    圖4-18 3毫升硝酸量之光電流106
    圖4-19 3.5毫升硝酸量之光電流106
    圖4-20 4.0毫升硝酸量之光電流107
    圖4-21 5.5毫升硝酸量之光電流107
    圖4-22 3毫升硝酸量之SEM圖(×50k)108
    圖4-23 3.5毫升硝酸量之SEM圖(×50k)108
    圖4-24 4.0毫升硝酸量之SEM圖(×50k)109
    圖4-25 5.5毫升硝酸量之SEM圖(×50k)109
    圖4-26 鍍層層數之XRD分析圖譜110
    圖4-27 鍍層層數=1之的SEM圖(×10k)110
    圖4-28 鍍層層數=2之SEM圖(×10k)111
    圖4-29 鍍層層數=3之SEM圖(×10k)111
    圖4-30 鍍層層數=4之SEM圖(×10k)112
    圖4-31 鍍層層數之穿透率112
    圖4-32 鍍層層數之反射率113
    圖4-33 鍍層層數之吸收隙數113
    圖4-34 鍍層層數之直接能隙114
    圖4-35 鍍層層數=1之光電流114
    圖4-36 鍍層層數=2之光電流115
    圖4-37 鍍層層數=1之SEM圖(×50k)115
    圖4-38 鍍層層數=2之SEM圖(×50k)116
    圖4-39 鍍層層數=3之SEM圖(×50k)116
    圖4-40 鍍層層數=4之SEM圖(×50k)117
    圖4-41 磁石轉速之XRD分析圖譜117
    圖4-42 磁石轉速之穿透率118
    圖4-43 磁石轉速之反射率118
    圖4-44 磁石轉速之吸收係數119
    圖4-45 磁石轉速之直接能隙119
    圖4-46 磁石轉速300rpm之光電流值120
    圖4-47 磁石轉速500rpm之光電流值120
    圖4-48 磁石轉速750rpm之光電流值121
    圖4-49 磁石轉速1000rpm之光電流值121
    圖4-50 磁石轉速300rpm之SEM圖(×1k)122
    圖4-51 磁石轉速500rpm之SEM圖(×1k)122
    圖4-52 磁石轉速750rpm之SEM圖(×1k)123
    圖4-53 磁石轉速1000rpm之SEM圖(×1k)123
    圖4-54 熱處理溫度之XRD分析圖譜124
    圖4-55 熱處理300℃之XRD分析圖譜( )124
    圖4-56 熱處理溫度之穿透率125
    圖4-57 熱處理溫度之反射率125
    圖4-58 熱處理溫度之吸收係數126
    圖4-59 熱處理溫度之直接能隙126
    圖4-60 熱處理400℃之光電流值127
    圖4-61 熱處理500℃之光電流值127
    圖4-62 熱處理300℃之SEM圖(×50k)128
    圖4-63 熱處理400℃之SEM圖(×50k)128
    圖4-64 熱處理500℃之SEM圖(×50k)129
    圖4-65 熱處理300℃之SEM圖(×5k)129
    圖4-66 熱處理400℃之SEM圖(×5k)130
    圖4-67 熱處理500℃之SEM圖(×5k)130
    圖4-68 AgIn5S8掺雜硒之XRD分析圖譜131
    圖4-69 硫化鎘(CdS)掺雜硒之XRD圖譜與EDS分析[38]131
    圖4-70 AgIn5S8未掺雜硒之EDS分析132
    圖4-71 AgIn5S8掺雜硒0.05at%之EDS分析132
    圖4-72 AgIn5S8掺雜硒0.1at%之EDS分析133
    圖4-73 AgIn5S8掺雜硒0.5at%之EDS分析133
    圖4-74 AgIn5S8掺雜硒1.0at%之EDS分析134
    圖4-75 AgIn5S8掺雜硒之穿透率134
    圖4-76 AgIn5S8掺雜硒之反射率135
    圖4-77 AgIn5S8掺雜硒之吸收係數135
    圖4-78 AgIn5S8掺雜硒於紅外光波段之吸收係數136
    圖4-79 AgIn5S8掺雜硒之直接能隙136
    圖4-80 AgIn5S7.996Se0.004之光電流值137
    圖4-81 AgIn5S7.992Se0.008之光電流值137
    圖4-82 AgIn5S7.96Se0.04之光電流值138
    圖4-83 AgIn5S7.92Se0.08之光電流值138
    圖4-84 AgIn5S8之Mott-Schottky量測139
    圖4-85 AgIn5S7.992Se0.008之Mott-Schottky量測139
    圖4-86 AgIn5S7.996Se0.004之SEM圖(×50k)140
    圖4-87 AgIn5S7.992Se0.008之SEM圖(×50k)140
    圖4-88 AgIn5S7.96Se0.04之SEM圖(×50k)141
    圖4-89 AgIn5S7.92Se0.08之SEM圖(×50k)141
    圖4-90 TiO2之XRD分析圖譜142
    圖4-91 TiO2(7M)之XRD分析圖譜( )142
    圖4-92 TiO2之穿透率143
    圖4-93 TiO2之反射率143
    圖4-94 TiO2之吸收隙數144
    圖4-95 TiO2之直接能隙144
    圖4-96 TiO2(3M)之SEM圖145
    圖4-97 TiO2(5M)之SEM圖145
    圖4-98 TiO2(7M)之SEM圖146
    圖4-99 TiO2覆蓋過程示意圖(a)起始反應(b)終止反應146
    圖4-100 TiO2(3M)-AgIn5S7.992Se0.008之SEM圖147
    圖4-101 TiO2(5M)-AgIn5S7.992Se0.008之SEM圖147
    圖4-102 TiO2(7M)-AgIn5S7.992Se0.008之SEM圖148
    圖4-103 AgIn5S7.992Se0.008之SEM剖面圖148
    圖4-104 TiO2(3M)-AgIn5S7.992Se0.008之SEM剖面圖149
    圖4-105 TiO2(5M)-AgIn5S7.992Se0.008之SEM剖面圖149
    圖4-106 TiO2(7M)-AgIn5S7.992Se0.008之SEM剖面圖150
    圖4-107 TiO2(3M)-AgIn5S7.992Se0.008之光電流150
    圖4-108 TiO2(5M)-AgIn5S7.992Se0.008之光電流151
    圖4-109 TiO2(7M)-AgIn5S7.992Se0.008之光電流151
    圖4-110 AgIn5S7.992Se0.008與TiO2-AgIn5S7.992Se0.008之穩定性量测152
    圖4-111 AgIn5S7.992Se0.008與TiO2-AgIn5S7.992Se0.008之穩定性量测  (400 s~1800 s)152
    Reference [1] 台灣電力公司,http://www.taipower.com.tw/。
    [2] 聯合國政府間氣候變遷問題小組(IPCC),http://www.ipcc.ch/。
    [3] 曲新生,陳發林,氫能技術:二十一世紀是氫能世紀,五南,臺北市,(2006)。 
    [4] A. Kudo, “Development of photocatalyst materials for water splitting
    ”, International Journal of Hydrogen Energy, Vol. 31, pp.197-202 (2006).
    [5] 國際能源總署(IEA),http://www.iea.org/。
    [6] 呂宗昕,圖解奈米科技與光觸媒,商周出版,臺北市,(2003)。
    [7] ENB Korea,http://enbkorea88.en.ec21.com/What_is_Photocatalyst --712104_712221.html。
    [8] S.O. Kasap, Optoelectronics and photonics: principles and practices, Prentice Hall, pp.255-273, (2001).
    [9] T. Bak, J. Nowotny, M. Rekas, and C.C. Sorrell, “Photoelectrochemi- cal hydrogen generation from water using solar energy. Materials- related aspects”, International Journal of Hydrogen Energy, Vol. 27, pp.991-1022, (2002).
    [10] V. Rakovics , Zs. J. Horváth, Zs. E. Horváth, I. Bársony, C. Frigeri ,
    and T. Besagni, “Investigation of CdS/InP heterojunction prepared
    bychemical bath deposition”, Physica Status Solidi C, Vol. 4, pp. 1490-1493, (2007).
    [11] B. Pejova, M. Najdoski, I. Grozdanov, and S. K. Dey, ” Chemical
    bath deposition of nanocrystalline (111) textured Ag2Se thin films”,
    Materials Letters, Vol. 43, pp.269-273, (2000).
    [12] D. Hariskos, M. Powalla, N. Chevaldonnet, D. Lincot, A. Schindler
    , and B. Dimmler, “Chemical bath deposition of CdS buffer layer:
    prospects of increasing materials yield and reducing waste”, Thin
    Solid Films, Vol. 387, pp.179-181, (2001).
    [13] U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Chemical and
    structural modifications of laser treated iron surfaces: investigation
    of laser processing parameters”, Applied Surface Science, Vol. 230
    , pp.364-370, (2004).
    [14] S. Biswas, M. F. Hossain, T. Takahashi, Y. Kubota, and A.
    Fujishima, “Photocatalytic activity of high-vacuum annealed
    CdS-TiO2 thin film”, Thin Solid Films, Vol. 516, pp.7313-7317
    , (2008).
    [15] T. Ishiyama, T. Arai, Y. Sato, K. Shinoda, B. Jeyadevan, and K.
    Tohji,“Photocatalytic efficiency of CdS film synthesized by CBD
    method”, American Institute of Physics Conference Proceedings,
    Vol. 833, pp.23-26, (2006).
    [16] H. Liu, and L. Gao, “Synthesis and properties of CdSe-sensitized
    rutile TiO2 nanocrystals as a visible light-responsive photocatalyst”,
    Journal of the American Ceramic Society, Vol. 88, pp.1020-1022,
    (2005).
    [17] D. Chen and J. Ye, “Photocatalytic H2 evolution under visible light
    irradiation on AgIn5S8 photocatalyst”, Journal of Physics and
    Chemistry of Solids, Vol. 68, pp.2317-2320, (2007).
    [18] I.V. Bodnar and V. F. Gremenok, “Structure and optical properties of AgIn5S8 films prepared by pulsed laser deposition”, Thin Solid Films, Vol. 487, pp.31-34, (2005).
    [19] L. H. Lin, C. C. Wu, and T. C. Lee, “Growth of crystalline AgIn5S8 thin films on glass substrates from aqueous solutions”, Crystal Growth & Design, Vol. 7, pp.2725-2732, (2007).
    [20] W. S. Chang, C. C. Wu, M. S. Jeng, K. W. Cheng, C. M. Huang, and T. C. Lee, “Ternary Ag-In-S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications”, Materials Chemistry and Physics, Vol. 120, pp.307-312, (2010).
    [21] A. F. Qasrawi, “Annealing effects on the structure and optical properties of AgIn5S8 thin films”, Journal of Alloys and Compounds, Vol. 455, pp.295-297, (2008).
    [22] K. K. Banger, M. H. C. Jin, J. D. Harris, P. E. Fanwick, and A. F. Hepp, “A new facile route for preparation of single-source precursors for bulk, thin film, and nanocrystallite I-III-VI semiconductors”, Inorganic Chemistry, Vol. 42, pp.7713-7715, (2003).
    [23] G. Delgado, A. J. Mora, C. Pineda, and T. Tinoco, “Simultaneous rietveld refinement of three phases in the Ag-In-S semiconductor system from x-ray powder diffraction”, Materials Research Bulletin, Vol. 36, pp.2507-2517, (2001).
    [24] M.A. Fox and M.T. Dulay, “Hetergeneous Photocatalysis” Chemistry Reviews, Vol. 93, pp.341-357, (1993).
    [25] R. S. Mane, and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films”, Materials Chemistry and Physics,
    Vol. 65, pp.1-31, (2000).
    [26] P.K. Nair, M.T.S. Nair, V.M. Garcoa, O.L. Arenas, Y. Pena, A.
    Castillo, I.T. Ayala, O. Gomezdaza, A. Sanchez, J. Campos, H. Hu, R. Suarez, and M.E. Rincon, “Semiconductor thin films by chemical bath deposition for solar energy related applications”, Solar Energy Materials and Solar Cells, Vol. 52, pp.313-344, (1998).
    [27] A. Fujishima, and K. Honda, ”Electrochemical photolysis of water at
    a semiconductor electrode”, Nature, Vol. 238, pp.37-38, (1972).
    [28] A. Kudo, and Y. Miseki, “Heterogeneous photocatalyst materials for
    water splitting”, Chemical Society Reviews, Vol. 38, pp.253-278,
    (2009).
    [29] A. Kudo, “Recent progress in the development of visible light-driven
    powdered photocatalysts forwater splitting”, International Journal of
    Hydrogen Energy, Vol. 32, pp.2673–2678, (2007).
    [30] H. Kato, and A. Kudo, “Visible-light-response and photocatalytic
    activities of TiO2 and SrTiO3 photocatalysts codoped with antimony
    and chromium”, Journal of Physical Chemistry B, Vol. 106,
      pp.5029, (2002).
    [31] R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or
    niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light
    response for H2 or O2 evolution from aqueous solutions”, Physical
    Chemistry Chemical Physics, Vol. 7, pp.2241-2245, (2005).
    [32] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons,
    New York, pp.790-838, (1981).
    [33] A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada, and H. W. Schock, “CIGS J–V distortion in the absence of blue photons”, Thin Solid Films, Vol. 480-481, pp.273-278, (2005).
    [34] A. Aquilera, M. L. Aquilar Hernandez, J. Orteqa-Lopez, M.,
    Sanchez, V. M., Gonzalez, and M. A. Trujillo, “Some physical properties of chalcopyrite and orthorhombic AgInS2 thin films
    prepared by spray pyrolysis”, Materials Science and Engineering: B,
    Vol. 102, pp.380-384, (2003).
    [35] A. F. Qasrawi, T. S. Kayed, and I. Ercan, “Fabrication and some
    physical properties of AgIn5S8 thin films”, Materials Science and
    Engineering, Vol.113, pp.73-78, (2004).
    [36] J. Q. Hu, B. Deng, K. B. Tang, C. R. Wang, and Y. T. Qian,
    “Preparation and phase control of nanocrystalline silver indium
    sulfides via a hydrothermal route”, Journal of materials research,
    Vol. 16, pp.3411-3415, (2001).
    [37] T. C. Deivaraj, J. H. Pard, M. Afzaal, P. O’Brien, and J. Vittal, “ Single-source precursors to ternary silver indium sulfide materials”, Chemical Communications, Vol. 22, pp.2304-2305, (2001).
    [38] D. Yang, S. Xu, Q. Chen, and W. Wang, “A simple organic synthesis for CdS and Se-doped CdS nanocrystals”, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 299, pp.153–159, (2007).
    [39] Y. Ueno, Y. Hattori, M. Ito, T. Sugiura, and H. Minoura, “Synthesis
    and photoelectrochemical characterization of (Ag2S)x(In2S3)1-x and
    AgInS2-ySey”, Solar Energy Materials and Solar Cells, Vol. 26,
    pp.229-242, (1992).
    [40] H. Shinguu, M.M.H. Bhuiyan, T. Ikegami, and K. Ebihara,
    “Preparation of TiO2/WO3 multilayer thin film by PLD method
    and its catalytic response to visible light”, Thin Solid Films, Vol.
    506–507, pp.111 – 114, (2006).
    [41] B. Liua, L. Wena, and X. Zhaoa, “Efficient degradation of aqueous
    methyl orange over TiO2 and CdS electrodes using photoelectron-
    catalysis under UV and visible light irradiation”, Progress in
    Organic Coatings, Vol. 64, pp.120–123, (2009).
    [42] K. W. Cheng, C. M. Huang, G. T. Pan, J. C. Huang, T. C. Lee, and     
      T. C. K. Yang, “The photoelectrochemical performances of Sb-doped AgIn5S8 film electrodes prepared by chemical bath deposition”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 202, pp.107–114, (2009).
    [43] D. S. Dhawalea, D. P. Dubal, R. R. Salunkhea, T. P. Gujara, M. C. Rathb, and C. D. Lokhande, “Effect of electron irradiation on properties of chemically deposited TiO2 nanorods”, Journal of Alloys and Compounds, Vol. 499, pp.63–67, (2010).
    [44] P. O’Brien and J. McAleese, “Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS”, Journal of Material Chemistry, Vol. 8, pp.2309–2314, (1998).
    [45] H. Y. Xu, H. Wang, T. N. Jin, and H. Yan, “Rapid fabrication of luminescent Eu:YVO4 films by microwave-assisted chemical           
      solution deposition”, Nanotechnology, Vol. 16, pp.65-69, (2005).
    [46] B. D. Cullity, and S. R. Stock, Elements of X-ray diffraction (Inter-
    national edition), Prentice-Hall, New Jersey, (2001).
    [47] S. Kumari, C. Tripathi, A. P. Singh, D. Chauhan, R. Shrivastav, S. Dass, and V. R. Satsangi, “Characterization of Zn-doped hematite
    thin films for photoelectrochemical splitting of water”, Current Science, Vol. 91, pp.1062-1064, (2006).
    [48] 郭俊麟,利用CBD法製備銅摻雜之硫系列光觸媒材料研究,碩士論文,國立中央大學機械工程研究所,桃園縣中壢市,(2008)。
    [49] 鄭 亨,以化學水浴法製備AgInS2可見光光電極及其摻雜銅之硏究,碩士論文,國立中央大學能源工程硏究所,桃園縣中壢市,(2009)。
    [50] C.D. Lokhande, A. Ennaoui, P.S. Patil, M. Giersig, K. Diesner, M. Muller, and H. Tributsch, “Chemical bath deposition of indium sulphide thin films: preparation and characterization”, Thin Solid Films, Vol. 340, pp.18-23, (1999).
    [51] R. Sahraei, G. M. Aval, A. Baghizadeh, M. Lamehi-Rachti, A. Goudarzi, and M. H. Majles Ara, “Investigation of the effect of temperature on growth mechanism of nanocrystalline ZnS thin films”, Materials Letters, Vol. 62, pp.4345–4347, (2008).
    [52] J. I. Pankove, Optical Process in Semiconductor, Prentice Hall, New York, (1971).
    [53] G. Delgado, A. J. Mora, C. Pineda, and T. Tinoco, “Simulation Rietveld refinement of three phases in the Ag-In-S semiconducting system from X-ray powder diffraction”, Material Research Bulletin, Vol. 36, pp.2507-2517, (2001).
    [54] B. Asenjo, A. M. Chaparro, M. T. Gutiérrez, J. Herrero, and C. Maffiotte, “Quartz crystal microbalance study of the growth of indium(III) sulphide films from a chemical solution”, Electrochimica Acta, Vol. 49, pp.737-744 , (2004).
    [55] R. Zhai, S. B. Wang, H. Y. Xu, H. Wang, and H. Yan, “Rapid formation of CdS, ZnS thin films by microwave-assisted
    chemical bath deposition”, Materials Letters, Vol. 59, pp.1497-
    1501, (2005).
    [56] T. B. Nasr, N. Kamoun, M. Kanzari, and R. Bennaceur, “Effect of pH on the properties of ZnS thin films grown by chemical bath deposition”, Thin Solid Films, Vol. 500, pp.4-8, (2006).
    [57] 黃惠良,曾百亨,蕭錫鍊,周明奇,林堅楊,江雨龍,李威儀,
      李世昌,林唯芳,太陽電池,五南,台北市,(2008)。
    [58] 施敏,黃調元,半導體元件物理與製作技術,交通大學出版社
      ,新竹市,(2006)。
    [59] 吳怡萱,再生能源概論,五南,台北市,(2008)。
    [60] 巫玉娟,活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之
      可行性研究,碩士論文,國立中山大學環境工程研究所,高雄
      市,(2004)。
    Advisor
  • Lih-wu Hourng(洪勵吾)
  • Files
  • 973208018.pdf
  • approve in 3 years
    Date of Submission 2010-07-21

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.