Title page for 973206002


[Back to Results | New Search]

Student Number 973206002
Author Yuan-Chien Yu(游原鑑)
Author's Email Address s932721@hotmail.com
Statistics This thesis had been viewed 1036 times. Download 1357 times.
Department Graduate Institute of Environmental Engineering
Year 2010
Semester 1
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Human Reliability Assessment of Silane Cylinder Change Process
Date of Defense 2011-01-08
Page Count 124
Keyword
  • Human reliability assessment
  • Human Reliability Assessment Event Tree
  • Silane supply system safety
  • Abstract Silane is a special gas widely used in semiconductor, photovoltaic, and flat panel display manufacturing. Silane is pyrophoric but does not always ignite when leaked. The delayed ignition may result in explosion in a confined environment. Most silane accidents occur during gas cabinet cylinder change. Increased silane consumption increases the frequency of empty cylinder replacement and hence the silane release. Consequently, bulk silane gas supply system, with cylinders containing more than 250 liters of silane, has gradually replaced gas cabinet.
      Despite enhanced safety features of silane supply systems, human errors during cylinder change continue to be the main cause for silane accidents. This study is aimed to analyze human reliability in silane cylinder change process for both gas cabinet and bulk silane supply systems. Since the proposed human reliability assessment technique is based on the standard operating procedures of cylinder change, the assessment results can also be used to prevent human errors.
      Because of the fact that certain steps in the cylinder change Standard Operating Procedures involve no operator intervention, these procedures are regrouped. The first phase utilizes the Hierarchical task Analysis principle to delete and combine the original cylinder change procedures. The second phase further transfers the major procedures into error types. The Human Reliability Assessment Event Tree is then constructed based on the condensed version of the operating procedures. Results indicate that incomplete installation of the gasket is the major human error for the gas cabinet cylinder change process while incomplete purge is the most significant error for the bulk silane supply system. Safe handling of cylinders is critical in preventing silane leak in both systems.
    Table of Content 摘要 .................................................................................................................. i
    Abstract ............................................................................................................ ii
    誌謝 ................................................................................................................ iv
    目錄 ................................................................................................................. v
    圖目錄 .......................................................................................................... viii
    表目錄 ............................................................................................................. x
    第一章 前言 ................................................................................................... 1
    1.1研究緣貣 ................................................................................................ 1
    1.2研究方法與目的 ..................................................................................... 3
    1.3預期成果 ................................................................................................ 4
    第二章 人為失誤與人為可靠度分析技術 ..................................................... 5
    2.1 人為失誤類型 ....................................................................................... 6
    2.1.1 基礎行為模式SRK ......................................................................... 6
    2.1.2 人為失誤與基礎行為模式 .............................................................. 8
    2.1.3 浴盆曲線人為失誤模式 .................................................................. 8
    2.2 HRA分析技術概述 ............................................................................. 11
    2.3 第一代HRA分析技術........................................................................ 14
    2.3.1 THERP ........................................................................................... 14
    2.3.2 HEART ........................................................................................... 16
    2.3.3 SPAR-H .......................................................................................... 21
    2.4 第二代HRA分析技術........................................................................ 23
    2.4.1 ATHEANA ..................................................................................... 23
    2.4.2 CREAM .......................................................................................... 25
    2.5 專家判斷HRA分析技術 .................................................................... 28
    2.5.1 APJ ................................................................................................. 28
    2.5.2 SLIM .............................................................................................. 29
    2.6 人為可靠度數據與資料庫 .................................................................. 31
    2.7 人為可靠度技術的優點與限制比較 ................................................... 33
    第三章 矽甲烷鋼瓶更換失效評估機制 ....................................................... 39
    3.1 HRA分析步驟與研究執行程序 .......................................................... 39
    3.2 層級作業分析(HTA) ........................................................................... 42
    3.3 預測人為失誤分析(PHEA) ................................................................. 43
    3.4 事件樹分析與HRA Event Tree .......................................................... 44
    3.4.1 事件樹分析(ETA) ......................................................................... 44
    3.4.2 HRA Event Tree ............................................................................. 47
    3.4.3 HRA Event Tree應用於鋼瓶更換作業 ......................................... 49
    3.5 鋼瓶更換作業人為失誤數據 .............................................................. 50
    3.6 矽甲烷供氣系統作業失效評估方法 ................................................... 51
    第四章 矽甲烷鋼瓶更換作業HRA Event Tree建構................................... 53
    4.1 矽甲烷供氣系統說明與鋼瓶更換程序 ............................................... 53
    4.2 鋼瓶更換步驟選擇與失誤 .................................................................. 60
    4.2.1 鋼瓶更換SOP刪減與合併 ........................................................... 60
    4.2.2 鋼瓶更換步驟HTA分析 .............................................................. 67
    4.2.3 鋼瓶更換步驟篩選........................................................................ 70
    4.2.4 鋼瓶更換失誤步驟分類與描述 .................................................... 73
    4.3 建構鋼瓶更換HRA Event Tree .......................................................... 75
    4.3.1 氣瓶櫃鋼瓶更換HRA Event Tree 1 ............................................. 76
    4.3.2 氣瓶櫃鋼瓶更換HRA Event Tree 2 ............................................. 79
    4.3.3 Y-鋼更換HRA Event Tree 1 .......................................................... 83
    4.3.4 Y-鋼更換HRA Event Tree 2 .......................................................... 84
    4.4 量化計算HRA Event Tree失效率 ..................................................... 87
    4.4.1 鋼瓶更換步驟失誤率數據來源 .................................................... 87
    4.4.2 衡量失誤步驟相關的硬體失效 .................................................... 91
    4.4.3 量化計算氣瓶櫃HRA Event Tree洩漏與失效率 ........................ 93
    4.4.4 量化計算Y-鋼HRA Event Tree洩漏與失效率 ........................... 96
    4.5 鋼瓶更換步驟HRA Event Tree結果與討論 ...................................... 99
    第五章 結論與建議 .................................................................................... 102
    5.1 結論 ................................................................................................... 102
    5.2 建議 ................................................................................................... 104
    參考文獻 ..................................................................................................... 105
    Reference [1] E.Y. Ngai, Q2/2010 Silane Safety, Specialty Gas Report, Vol. 49, 2010. http://www.specialtygasreport.com/features/429
    [2] M.C. Leva, Human Errors Analysis and Safety Management Systems in Hazardous Activities (Interim Report), International Institute for Applied Systems Analysis, Austria, January 2005.
    [3] J. Rasmussen and K.J. Vincente, Cognitive control of Human Activities: Implication for Ecological Interface Design, Riso National Laboratory, Denmark, 1987.
    [4] 葉宇光,事件樹於職業安全風險評估研究,國立中央大學,2009年1月。
    [5] J.R. Chen, H.Y. Tsai, S.K. Chen, H.R. Pan, S.C. Hu, C.C. Shen, C.M. Kuan, Y.C. Lee and C.C. Wu, Analysis of a Sailane Explosion in a Photovoltaic Fabrication Plant, Process Safety Progress, Vol. 25, pp. 237-244, September 2006.
    [6] J. Reason, Human Error: Models and Management, British Medical Journal, Vol. 320, pp. 119-121, 2000.
    [7] S. Wu, S. Hrudey, S. French, T. Bedford, E. Soane and S. Pollard, A Role for Human Reliability Analysis in Preventing Drinking Water Incidents and Securing Safe Drinking Water, Water Research, Vol. 43, pp. 3227-3238, 2009.
    [8] E. Hollnagel, Human Reliability Assessment in Context, Nuclear Engineering and Technology, Vol. 37, pp. 159-166, April 2005.
    [9] J. Bell and J. Holroyd, Review of Human Reliability Assessment Methods, Health and Safety Executive, UK, 2009.
    [10] M. Marseguerra, E. Zio and M. Librizzi, Quantitative Developments in the Cognitive Reliability and Error Analysis Method for the Assessment of Human Performance, Annals of Nuclear Energy, Vol. 33, pp. 894-910, 2006.
    [11] B. Kirwan and H. Gibson, CARA: A Human Reliability Assessment Tool for Air Traffic Safety Management-Technical Basis and Preliminary Architecture, The Safety of Systems Proceedings of the Fifteenth Safety-critical Systems Symposium, pp. 197-214, UK, 2007.
    [12] V. Gerdes, HRA Techniques: A Selection Matrix, Microelectronic Reliability, Vol. 35, pp. 1215-1231, 1995.
    [13] J.F. Whiting, Improving Human Reliability in OHSMS-Errors and Mistakes are Consequences Not Causes, Risk Engineering Society of Australia, 2003.
    http://www.aposho.org/conference/img/16_Session1.doc
    [14] R.E. Giuntini, Mathematical Characterization of Human Reliability for Multi-Task System Operations, Institute of Electrical and Electronics Engineers, 2000.
    [15] R.B. Abemethy, Weibull Analysis Handbook, Aero Propulsion Laboratory, 1983.
    [16] A.D. Swain and H.E. Guttmann, Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications, US Nuclear Regulatory Commission, 1983.
    [17] B. Kirwan, The Validation of Three Human Reliability Quantification Techniques-THERP, HEART and JHEDI: Part 1-Technique Descriptions and Validation Issues, Applied Ergonomics, Vol. 27, pp. 359-373, 1996.
    [18] M. Harrison, Human Error Analysis and Reliability Assessment, The Interdisciplinary Research Collaboration in Dependability, 2004. http://spiderman-2.laas.fr/IFIPWG/Workshops&Meetings/46/05-Harrison.pdf
    [19] D. Gertman, H. Blackman, J. Marble, J. Byers and C. Smith, The SPAR-H Human Reliability Analysis Methods, US Nuclear Regulatory Commission, August 2005.
    [20] R.L. Boring and D.I. Gertman, Human Error and Available Time in SPAR-H, Idaho National Engineering and Environmental Laboratory, 2004.
    [21] D.A. Powers, Technical Basis and Implementation Guidelines for Technique for Human Event Analysis, US Nuclear Regulatory Commission, May 2000.
    [22] J. Forester, A. Kolaczkowski, S. Cooper, D. Bley and E. Lois, ATHEANA User’s Guide (Final Report), US Nuclear Regulatory Commission, June 2007.
    [23] M. Marseguerra, E. Zio and M. Librizzi, Quantitative Developments in the Cognitive Reliability and Error Analysis Method for the Assessment of Human Performance, Annals of Nuclear Energy, Vol. 33, pp. 894-910, 2006.
    [24] Y. Fujita and E. Hollnagel, Failures without Errors: Quantification of Context in HRA, Reliability Engineering and System Safety, Vol. 83, pp. 145-151, 2004.
    [25] M. Marseguerra, E. Zio and M. Librizzi, Human Reliability Analysis by Fuzzy CREAM, Risk Analysis, Vol. 27, pp. 137-154, 2007.
    [26] P.R. Amyotte and F.I. Khan, Development of a Human Error Probability Index for Offshore Platform Evacuations, Petroleum Research Atlantic Canada, Canada, August 2005.
    [27] K.S. Park and T.I. Lee, A New Method for Estimating Human Error Probabilities: AHP-SLIM, Reliability Engineering and System Safety, Vol. 93, pp. 578-587, 2008.
    [28] S.E. Taylor-Adam and B. Kirwan, Human Reliability Data Requirements, International Journal of Quality and Reliability Management, Vol. 12, pp. 24-46, 1995.
    [29] B. Kirwan, G. Basra and S.E. Taylor-Adam, CORE-DATA: A Computerised Human Error Database for Human Reliability Support, Institute of Electrical and Electronics Engineers, 1997.
    [30] Risk Management- Risk Assessment Techniques, IEC/ISO 31010, International Electrotechnical Commission and International Organization for Standardization, Switzerland, November 2009.
    [31] B. Kirwan, Human Reliability Assessment, Evaluation of Human Work, pp. 921-968, UK, 1994.
    [32] Human Factor Briefing Notes: Human Reliability Analysis, the Institute of Petroleum, UK, 2003.
    [33] D. Embrey, Task Analysis Techniques, Human Reliability Associates Ltd, 2000.
    [34] R. Maguire, Validating a Process for Understanding Human Error Probabilities in Complex Human Computer Interfaces, SE Validation Ltd, 2005.
    [35] S. Mannan and F.P. Lees, Lees’ Prevention in the Process Industries: Hazard Identification, Assessment and Control, Third Edition, Butterworth Heinemann, pp. 74-77, 2004.
    [36] 陳清庭、張翼,氯氣氣瓶櫃危害分析與改善研究,工業安全科技,46-53頁,2006年6月。
    [37] 王嘉麟,運用失效模式與影響分析評估矽甲烷供應系統之安全性:以TFT-LCD廠為例,國立交通大學,2006年12月。
    [38] 劉鴻世、曾淑春、黃志強、徐希慶,矽甲烷(SiH4)氣瓶櫃操作人為失誤之分析,2003年。
    [39] V.M. Fthenakis and S.R. Trammell, Reference Guide for Hazard Analysis in PV Facilities, Brookhaven National Laboratory, New York, September 2003.
    [40] ISA-84 Process Safety and User Resources, CD-ROM, International Society of Automation, Triangle, North Carolina, 2007.
    [41] C. Baber and N.A. Stanton, Human Identification Techniques Applied to Public Technology: Predictions Compared with Observed Use, Applied Ergonomics, Vol. 27, pp. 119-131, 1996.
    [42] C.A. Ericson, Hazard Analysis Techniques for System Safety, Second Edition, John Wiley and Sons, Inc., pp. 223-234. 2005.
    [43] M. Rausand, System Reliability Theory, Second Edition, John Wiley and Sons, Inc., 2004.
    [44] I. Sutton, E-book 2: Process Risk Management, First Edition, Sutton Technical Books, 2007.
    [45] Layer of Protection Analysis: Simplified Process Risk Assessment, Center for Chemical Process Safety of the American Institute of Chemical Engineers, New Work, 2001.
    [46] ioMosaic Corporation, Designing an Effective Risk Matrix. http://www.iomosaic.com
    [47] J.E. Nunez Mc Leod and S.S. Rivera, Human Error Management Optimization in CREAM NPP, Proceedings of World Congress on Engineering, Vol. 1, UK, 2009.
    [48] U.S. Department of Homeland Security, Risk-based Decision-making Guidelines: Applying Risk Assessment Tools-Chapter 12-Event Tree Analysis, Procedures for Assessing Risks.
    http://www.uscg.mil
    Advisor
  • Shuh Woei Yu(于樹偉)
  • Files
  • 973206002.pdf
  • approve immediately
    Date of Submission 2011-01-26

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.