Title page for 973204059


[Back to Results | New Search]

Student Number 973204059
Author Zhe-rui Zhang(張哲瑞)
Author's Email Address No Public.
Statistics This thesis had been viewed 648 times. Download 572 times.
Department Chemical and Materials Engineering
Year 2009
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Hydrogen production by Partial Oxidation of methanol over Cu/Al2O3/RHA catalysts
Date of Defense 2010-06-24
Page Count 133
Keyword
  • alumina
  • catalyst
  • copper catalyst
  • hydrogen
  • partial oxidation of methanol
  • promoter
  • Abstract In this work, the rice husk ash (RHA) was used as a catalyst support. The RHA-supported copper catalysts (Cu/Al2O3/RHA) were prepared by the deposition-precipitation technique. Production of hydrogen by partial oxidation of methanol (POM) over Cu/Al2O3/RHA catalysts was investigated. The catalysts were characterized by a variety of techniques, including N2O chemisorption, X–ray diffraction, inductively coupled plasma-atomic mission spectrometer, thermogravimetric analyzer, scanning electron microscopy, transmission electron microscopy, and temperature-programmed reduction. The copper surface area was determined by pulse chemisorption using N2O. We found a correlation between the copper surface area and catalytic activity.
    TEM images show that copper crystallites are spherical in shape. The particles size of copper increases with increasing the calcinaiton temperature. SEM observations show that these catalysts are formed with great structure of net. XRD analyses demonstrate that spinel CuAl2O4 is formed when the calcination temperature over 773 K . The results of the activity tests indicate that the Al2O3 promoter and the catalyst composition greatly influence the activity as well as the selectivity for H2 formation . The introduction of Al2O3 promoter not only helps to increase the activity of Cu/Al2O3/RHA catalyst but also improves the stability of the catalyst. The activity of Cu/Al2O3/RHA catalysts with different Al2O3 loading , O2/CH3OH ratio, calcination temperature and reaction temperature was optimized. The most suitable catalysts , prepared at 10wt.% Cu/1wt.% Al2O3/RHA, O2/CH3OH = 0.3, calcined at 673 K and reacted at 523 K show higher activity.
    Table of Content 目錄v
    圖目錄ix
    表目錄xiv
    第一章 緒論1
    1.1 前言1
    1.2 燃料電池原理3
    1.3 燃料電池的種類5
    1.4 甲醇製氫6
    1.5 研究內容與論文架構7
    第二章 文獻回顧9
    2.1 稻殼灰分的製備程序9
    2.2 銅觸媒的性質9
    2.3 沈澱固著法製備擔載銅觸媒11
    2.4 煅燒與還原程序13
    2.5 擔體與擔體效應14
    2.6 銅金屬表面積的測定16
    2.7 銅活性位子17
    2.8 添加氧化鋁促進劑18
    第三章 實驗方法與裝置19
    3.1 稻殼灰分擔體的製備19
    3.1-1 水洗程序19
    3.1-2 酸洗程序20
    3.1-3 熱解程序22
    3.1-4 碳燒程序24
    3.2 擔載銅觸媒的製備24
    3.3 擔體銅觸媒的鑑定分析28
    3.3-1 感應耦合電漿原子放射光譜儀(ICP-AES)分析28
    3.3-2 熱重分析(TGA)29
    3.3-3 X射線繞射分析(XRD)30
    3.3-4 程式升溫還原(TPR)33
    3.3-5 銅金屬表面積的量測34
    3.3-6 場發射掃描式電子顯微鏡(FE-SEM)分析40
    3.3-7 穿透式電子顯微鏡 (TEM)41
    3.4 觸媒活性測試—甲醇部份氧化產製氫氣反應45
    3.5 實驗流程與操作變數46
    3.5-1 稻殼灰分(RHA)的製備46
    3.5-2 稻殼灰分擔體銅觸媒 (Cu/RHA)49
    3.6 數據的計算與實例50
    3.6-1 銅觸媒與促進劑Al2O3理論載量的定義與計算50
    3.6-2 轉化率的定義與計算51
    3.6-3 選擇率的定義與計算54
    3.6-4 產生速率的定義與計算56
    3.7 氣體、藥品及儀器設備57
    3.7-1 氣體57
    3.7-2 藥品58
    3.7-3 儀器設備58
    第四章 結果與討論60
    4.1 物性分析60
    4.1-1 觸媒上的成份分析60
    4.1-2 煅燒條件的選擇62
    4.1-3 X射線繞射分析(XRD)64
    4.1-4 程式升溫還原(TPR)的分析結果69
    4.1-5 N2O分析結果(N2O - Titration)73
    4.1-6 穿透式電子顯微鏡(TEM)75
    4.1-7 場發射掃描式電子顯微鏡(FE-SEM)77
    4.2 化性分析82
    4.2-1 添加促進劑Al2O3對觸媒活性的影響84
    4.2-2 煅燒溫度對觸媒活性的影響87
    4.2-3 反應物進料比對觸媒活性的影響93
    4.2-5 反應溫度對觸媒活性的影響97
    4.2-6 10wt.% Cu/1wt.% Al2O3/RHA與10wt.% Cu/1wt.% Al2O3/SiO2觸媒的比較99
    第五章 結論106
    參考文獻109
    Reference Agrell, J., H. Birgersson, M. Boutonnet, I. Melian-Cabrera,R.M. Navarro, J. L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, Journal of Catalysis., 291, 389, (2003).
    Agrell, J., K. Hasselbo, K. Jansson, S. G. Järås, M. Boutonnet, “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique”, Applied Catalysis A: General., 211, 239, (2001).
    Alejo, L., R. Lago, M.A. Pefia, J.L.G. Fierro, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts”, Applied Catalysis A: General., 162, 281, (1997).
    Bond, G.C., Namijo, S.N., “An improved procedure for estimating the surface area of supported copper catalysts”, Journal of Catalysis., 118, 507,(1989).
    Cao, Chundi., K.Hohn, “Study of reaction intermediates of methanol decomposition and catalytic partial oxidation on Pt/Al2O3”, Applied Catalysis., 354, 26, (2009).
    Evans, J.W., Winwright, M.S, Bridgewater, A.J, Young, D.J, “On the determination of copper surface area by reaction with nitrous oxide”, Applied Catalysis., 7, 75, (1983).
    Gil. A., A. Diaz, L. M. Gandia, and M. Montes, “Influence of the preparation method and the nature of the support on the stability of nickel catalysts”, Applied Catalysis A., 109, 167 (1994).
    Guerriro-Ruiz, A., I. Rodriguez-Ramos, and J. L. G. Fierro, Applied Catalysis., 72, 119 (1991).
    Guerreiro, E.D., Gorriz, O.F., Rivarola, J.B., Arrua, L.A., “Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation”, Applied Catalysis A: General., 165, 259, (1997).
    Horny, C., A. Renken, L. Kiwi-Minsker, “Compact string reactor for autothermal hydrogen production”, Catalysis Today., 120, 45, (2007).
    Huang, T.J., Wang, S.W., “Hydrogen production via partial oxidation of methanol over copper-zinc catalysts”, Applied Catalysis., 24, 287 , (1986).
    Lindström, B., Pettersson, L.J., Govind Menon, P., “Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles”, Applied Catalysis A: General., 234 , 111, (2002) .
    Lippits, M.J., R.R.H. Boer Iwema, B.E. Nieuwenhuys, “A comparative study of oxidation of methanol on γ-Al2O3 supported group IB metal catalysts”, Catalysis Today., (2008).
    Luo,M., P. Fang, M. He, Y. Xie, “In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation”, Journal of Molecular Catalysis., 239, 243, (2005).
    Marchi, A.J., J.L.G. Fierro, J.Santamara, A. Monzón, “Dehydrogenation of isopropylic alcohol on Cu/SiO2 catalyst: a study of the activity evolution and reactivation of the catalyst”, Applied Catalysis., A, 142, 375, (1996).
    Narita, K., Takeyawa, N., Kobayashi, J., Toyoshima, I., “Adsorption of nitrous oxide on metallic copper catalysts”, Reaction.Kinetics. Catalysis. Leterst., 19, 91, (1982).
    Osinga, T.J., B. G. Linsen and W. P.Beek, “The determination of the specific copper surface area in catalysts”, Journal of Catalysis., 277, 7, (1967).
    Patel, M., A. Karera, and P. Prasanna, “Effect of Thermal and Chemical Treatment on Carbon and Silica Contents in Rice Husk”, Journal of Molecular Science., 20, 4387, (1987).
    Raphael, O., Idem, Narendra, Bakhshi, “Production of Hydrogen from Methanol over Promoted Coprecipitated Cu-Al Catalysts:The Effects of Various Promoters and Catalyst Activation Methods”, Industrial. Engineering Chemistry Research., 34, 1548, (1995).
    Richardson, J.T., Dubus, R.J., ”Crystallite size distributions of sintered nickel catalysts”, Journal of Catalysis., 57,417, (1979).
    Riverors, H., Garz, C., “Rice Husks as a Source of High Purity Silica”, Journal of Crystal Growth., 22, 4665, (1987).
    Shimokawabe, M., N. Takezawa, and H. Kobayashi, “Characterization of copper-silica catalysts prepared by ion exchange”,  Applied Catalysis., 2, 379 (1982).
    Suzuki, K.,Velu. S, Osaki, T, “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts; a new and efficient method for the production of CO-free hydrogen for fuel cells”, Chem. Commun., 2341, (1999).
    Shishido, T., Y. Yamamoto, H. Morioka, K. Takehira , “Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3catalysts prepared by homogeneous precipitation:Steam reforming and oxidative steam reforming”, Jouranal of Molecular Catalysis A: Chemical., 268, 185, (2007).
    Toupance, T., M. Kermarec, and C. Louis, “Metal particles size in silica - supported copper catalysts influence condition of preperation and of thermal retreatments”, Journal of Physical Chemistry.B, 104, 965, (2000).
    van den Oetelaar L.C.A., A. Partridge, S.L.G. Toussaint, C.F.J. Flipse, H.H. Brongersma, “A Surface science study of model catalysts. 2.Metal-support interactions in Cu/SiO2 model catalysts”, Journal of Physical Chemistry B., 102, 9532, (1998).
    van der Grift C.J.G., P.A. Elberse, A. Mulder, J.W. Geus, “Preparation of silica-supported copper catalysts by means of deposition precipitation”, Applied Catalysis., 59, 275, (1990a).
    van der Grift, C.J.G., Mulder A., Geus, J.W., “Characterization of silica-supported copper catalysts by means of temperature – programmed reduction”, Applied Catalysis., 60, 181, (1990b).
    van der Grift, C.J.G., Wielers A.F.H., Joghi B.P.J., Van Beijnum J., De Boer M., Versluijs-Helder M., Geus J.W., “Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles”, Journal of Molecular Catalysis., 131, 178, (1991).
    van Dillen, A.J.,Geus,G.W., Hermans,M.A.L.,Van der Meijden, J., “Proceedings, 6th international congress on catalysis, London, 1976”, Chemical Society., 199,677, (1977).
    Velu, S., K. Suzuki, T. Osaki, “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides”, Catalysis Letters., 62, 159, (1999).
    Wang, Z., W. Wang, G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy., 28, 151,(2003a).
    Wang, Z., W. Wang, G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy., 28, 151 , (2003b).
    Wang, Z., J. Xi, W. Wang, G. Lu, “Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts”, Journal of Molecular Catalysis A:Chemical., 191, 123, (2003).
    Wigley, T.M.L., Richels, R., and Edmonds, J.A., “Economic and environmental choice in the stabilization of atmospheric CO2 concentrations”, Nature., 379, 240,(1996).
    Choi. Y., G. Harvey, Stenger., “Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 atalyst”, Applied Catalysis B:Environmental., 38, 259, (2002).
    John Willett, “Gas chromatography” , “ACOL”, (1987).
    吳榮宗, “工業觸媒概論”, “國興出版社”, (1995).
    姚品全, “淺談銅觸媒”, 觸媒與製程, 8(2), (2000) 47.
    王奕凱, “非均勻系催化原理與應用”, “國立編譯館主編” (2000).
    郭茂穗, “以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究”, 中央大學化學工程與材料工程研究所博士論文, (2002).
    黃至瑋, “氧化矽擔體銅觸媒應用於甲醇部份氧化產製氫氣之研究”, 中央大學化學工程與材料工程研究所碩士論文, (2007).
    李澤安, “氧化矽-氧化鋅複合擔體銅觸媒應用於甲醇部份氧化產製氫氣之研究”, 中央大學化學工程與材料工程研究所碩士論文, (2007).
    黃志翔, “稻殼灰分擔載銅觸媒應用於氧化性甲醇蒸氣重組產製氫氣之研究”, 中央大學化學工程與材料工程研究所碩士論文, (2008).
    Advisor
  • Feg-wen Chang(張奉文)
  • Files
  • 973204059.pdf
  • approve in 1 year
    Date of Submission 2010-07-01

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.