Title page for 973203065


[Back to Results | New Search]

Student Number 973203065
Author Tzu-Yu Kao(高慈妤)
Author's Email Address rita75726@yahoo.com.tw
Statistics This thesis had been viewed 979 times. Download 269 times.
Department Mechanical Engineering
Year 2009
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Study on the flow and thermal characteristics of heat storage system
Date of Defense 2010-06-30
Page Count 149
Keyword
  • enthalpy-porosity method
  • heat storage system
  • phase change material
  • Abstract This study investigates the thermal and flow characteristics of an energy storage system using phase-change materials (PCM). The governing dimensionless equations of the problem and boundary conditions are formulated and solved numerically by using the enthalpy-porosity method with the control volume approach. The melting process, the total melting time, and the effects of several parameters are discussed. The dimensionless parameters considered include the Peclet number, the Stefan number, the aspect ratio, and the thermal conductivity ratio of the PCM to the heat transfer fluid.
    Results show that, for cases of high Peclet number, high Stefan number or high thermal conductivity ratio, the melting time is reduced due to the enhancement of heat transfer and the circulation of the PCM. For intermediate and high temperature PCM energy storage systems, KF is the best material to use.
    Correlations between the dimensionless total melting time of the PCM and the Peclet number, Stefan number, aspect ratio and the thermal conductivity ratio are also derived for different conditions.
    Table of Content 中文摘要 ……………………………………………………………i
    英文摘要 …………………………………………………………ii
    致謝 ………………………………………………………………iii
    目錄 ………………………………………………………………iv
    表目錄 …………………………………………………………viii
    圖目錄 ……………………………………………………………x
    符號說明 ………………………………………………………xv
    第一章、緒論 ……………………………………………………1
    1-1 前言 ………………………………………………………1
    1-2 研究動機 …………………………………………………4
    第二章、文獻回顧 ………………………………………………5
    2-1  儲熱方式 ………………………………………………5
    2-1-1 顯熱儲存 …………………………………………5
    2-1-2 潛熱儲存 …………………………………………6
    2-1-3 化學能儲存 ………………………………………6
    2-1-4 結論 ………………………………………………7
    2-2相變化材料的介紹 ……………………………………8
    2-2-1 依材料組成區分 …………………………………8
       2-2-1.1 無機相變材料 ………………………………8
       2-2-1.2 有機相變材料 ………………………………9
       2-2-1.3 複合相變材料 ………………………………10
    2-2-2 依溫度區分 ………………………………………12
    2-2-2.1 低溫相變化材料 ……………………………12
       2-2-2.2 高溫相變化材料 ……………………………12
    2-2-3 相變化材料的選取 ……………………………13
    2-3相變化儲熱相關文獻 ………………………………15
    2-3-1 實驗相關文獻 ……………………………………15
    2-3-2 數值模擬相關文獻 ………………………………16
    2-4  研究主題 ………………………………………………19
    第三章、理論分析 ……………………………………………20
    3-1 相變傳熱問題 …………………………………………20
    3-2 固液相變解法 …………………………………………20
    3-2-1 移動邊界方法 ……………………………………21
    3-2-2 固定邊界方法 ……………………………………21
    3-2-3 enthalpy-porosity …………………………………22
    3-3 幾何模型 ………………………………………………22
    3-4 統御方程式 ……………………………………………22
    3-5 初始與邊界條件 ………………………………………26
    第四章、數值方法與驗證 ……………………………………28
    4-1 數值方法 ……………………………………………28
    4-1-1 能量方程式 ………………………………………28
    4-1-2 連續與動量方程式 ………………………………29
    4-1-3 壓力修正方程式 …………………………………32
    4-2  文獻驗證 ………………………………………………35
    4-2-1文獻驗證一 …………………………………………35
    4-2-2 文獻驗證二 ………………………………………36
    4-3格點與 測試 ……………………………………………37
    4-3-1 格點測試 …………………………………………37
    4-3-2 測試 ……………………………………………37
    第五章、結果與討論 …………………………………………38
    5-1 Peclet number 之影響 ………………………………38
    5-1-1 入口流量之影響 …………………………………40
    5-2 Stefan numerber 之影響 ………………………………41
    5-2-1 入口溫度之影響 …………………………………44
    5-3縱橫比之影響 ……………………………………………45
    5-4熱傳導係數比值之影響 …………………………………46
    5-5無因次時間整理 …………………………………………49
    5-6幾何參數之影響 …………………………………………50
    5-6-1 R1之影響 …………………………………………51
    5-6-2 R2之影響 …………………………………………51
    5-6-3 l之影響 …………………………………………52
    5-7相變化材料與工作流體之影響 …………………………52
    5-7-1 低溫工作流體 ……………………………………53
    5-7-1.1鹽類 …………………………………………53
    5-7-1.2 金屬 …………………………………………53
    5-7-2 中溫工作流體 ………………………………………54
    5-7-3 高溫工作流體 ……………………………………55
    第六章、結論與建議 …………………………………………57
    6-1 結論 ……………………………………………………57
    6-2 未來研究方向與建議 …………………………………58
    參考文獻 ………………………………………………………59
    Reference 1.Mehling, H., and Luisa, F. C., Heat and cold storage with PCM., Springer., Berlinm, 2008
    2.Lorsch, H. G., “Thermal energy storage for solar heating” American Society of Heating,Refrigeratimg and Air-Conditioning Engineering Journal, Vol 17, pp.47-52,1975
    3.Loef, G.O.G., “Cost of house heating with solar system,” Solar Energy, Vol 14, pp. 253-278, 1973
    4.Dhifaoui, B., Jabrallah, S. B., and Belghith, A., Corriou, J. P., “Experimental study of the dynamic behavior of a porous medium submitted to a wall heat flux in view of thermal energy storage by sensible heat” International Journal of Thermal Sciences, Vol 46, pp. 1056-1063, 2007
    5.Nallusamy, N., Sampath, S., and Velraj, R., “Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources,” Renewable Energy, Vol 32, pp. 1206-1227, 2007
    6.Alva, L. H. S., Gonzalez, J. E., and Dukhan, N., “Initial analysis of PCM Integrated Solar Collectors,” Journal of Solar Energy Engineering, Vol. 128, No. 2, pp.173-177, 2006
    7.Fatih Demirbas M., “Thermal energy storage and phase change materials:An overview,” Energy Sources, Part B: Economics, Planning and Policy, Vol. 1, No. 1, pp. 85-95, 2006
    8.Kaygusuz, K., “The Viability of Thermal energy storage,” Energy Sources, Vol. 21, No. 8, pp. 745-755, 1999
    9.Kanamori, M., Matsuda, H., and Hasatani, M., “Heat storing releasing characteristics of a chemical heat storage unit of electricity using a Ca(OH)2/CaO reaction,” Heat Transfer-Japanese Research, Vol. 25, No. 6, pp. 400-409, 1996
    10.邢玉明,袁修干,王長和,「空間站高溫固液相變蓄熱器熱熔器的實驗研究」,航空動力學報,Vol. 16, No. 1, pp.75-80, 2001。
    11.Xing, Y. M., Xu, X., Yuan, X. G., Cui, H. T., and Zhang, Y. H., “Numerical simulation of high temperature phase change heat storage system,” Heat Transfer—Asian Research, Vol. 33, No. 1, pp. 32-41, 2004
    12.皮啟鐸,「太陽池水和鹽相變熱得探討」,太陽能學報,Vol. 15, No. 11, pp.8-13, 1994
    13.黃志光,「聚光太陽爐用金屬相變儲能裝置的研究」,太陽能學報,Vol. 13, No.3, pp.271-276,1992
    14.Terry, C. D., “Composite salt ceramic media for thermal energy storage application,” Proceedings of 17th IECEC Meeting, pp. 2043-2048, Los Angeles, USA, 1982
    15.Petri, R., Ong, E. T., and Kardas, A., “Development of composite latent/sensible heat storage media,” Technical report, December 1990
    16.Randy, J., and Petri, R., “High-temperature salt/ceramic thermal storage phase change,” Proceeding 17th IECEC Meeting, Vol. 4, pp. 1769-1774, Auguest 1983
    17.Hame, E., Taut, U., and Grob, Y., “Salt ceramic thermal energy storage for solar thermal central receiver plants,” Proceedings Solar World Congress, Vol. 2, No.1, pp. 937-942, 1992
    18.Gliick, A., “Development and testing of advanced TES materials for solar thermal central receiver plants,” Proceedings Solar World Congress, Vol. 2, No.1, pp. 943-948, 1991
    19.Tamme, R., Tant, U., and Streuber, C., “Energy storage development for solar thermal process,” Solar Energy Materials and solar cells, Vol. 24, No. 1, pp. 386, 1991
    20.Notter, W., Lechner, T., and Grob, U., “Thermophysical properties of the composite ceramic-salt system(SiO2/Na2SO4),”Thermochimica Acta, Vol. 218, pp. 445-453, 1993
    21.Notter W., and Hahne E., “Thermal expansion models for polycrystalline salt-ceramics,” Thermochimica Acta, Vol. 290, No. 1, pp. 93-100, 1996
    22.Steinei, D., “Development and investigation of thermal energy storage systems for the media temperature range,” Proceedings IECEC Meeting, Vol. 193,1995
    23.Sehwerin, M., and Listle, W., Development of a latent heat storage system with ceramic matrix for utilization of industrial waste heat, ALPH labor, GmbH, Ismaning(DE), 1998
    24.Hadjieva M., “Composite salt-hydrate concrete system for building energy,” Renewable Energy , Vol. 19, No. 1-2, pp. 111-115, 2000
    25.張仁元,柯秀芳,李愛菊, 「無機鹽/陶瓷基複合儲能材料的製備和性能」, 材料研究學報,Vol. 14, No.6, pp. 652-656,2000
    26.Hoshi, A., Mills, D. R., Bittar, A., and Saitoh, T. S., “Screening of high melting point phase change materials(PCM) in solar thermal concentrating technology based on CLFR,” Solar Energy, Vol. 79, pp. 332-339, 2005
    27.Kenisarin, M., and Mahkamov K., “Solar energy storage using phase change material,” Renewable and Sustainable Energy Reviews, Vol. 11, pp. 1913-1965, 2007
    28.Velraj, R., Seeniraj, R. V., Hafner, B., Faber, C., and Schwarzer, K., “Heat transfer enhancement in a latent heat storage system,” Solar Energy, Vol. 65, pp.171-180, 1999
    29.Sparrow, E. M., Larsen, E. D., and Ramsey, J. W., “Freezing on a finned tube for either conduction-controlled or natural-convection-controlled heat transfer,” International Journal of Heat Mass Transfer ,Vol. 24, pp. 273-284, 1981
    30.Smith, R. N., and Koch, J. D., “Numerical solution for freezing adjacent to a finned surface,” In Proceedings of the 7th International Heat Transfer Conference, pp. 69-74 ,1982
    31.Lacroix, M., “Study of the heat transfer behavior of a latent heat thermal energy unit with a finned tube,” International Journal of Heat Mass Transfer , Vol. 36, pp. 2083-2092, 1993
    32.Padmanabhan, P. V., and Krishna, M. V., “Outward phase change in a cylindrical annulus with axial fins on the inner tube,” International Journal of Heat Mass Transfer, Vol. 19, pp. 1855-1866, 1986
    33.Velraj, R., Seeniraj, R. V., Hafner, B., Faber, C., and Schwarzer, K., “Experimental analysis and numerical modeling of inward solidification on a finned vertical tube for a latent heat storage unit,” Solar Energy , Vol. 60, pp. 281-290, 1997
    34.Sauer, E., Energietransport-speicherung und verteilung, Technischer Verlag Resch, Kollenberg ,Gemermy, 2004
    35.Eftekhar, J., Shekh, A. H., and Lou, D. Y. S., “Heat transfer enhancement in a paraffin wan thermal storage system,” Journal of Solar Energy Engineering, Vol. 106, pp. 299-306, 1984
    36.Hafner, B., and Schwarzer, K., “Improvement of the heat transfer in a phase-change-materials storage,” In Proceedings of the 4th workshop of IEA ECES IA annex 10, Bendiktbeuern, Germany, 1999
    37.Siegel, R., “Solidification of low conductivity material containing dispersed high conductivity particles,” International Journal of Heat Mass Transfer, Vol (20), pp. 1087-1089, 1977
    38.Hoogendoorn, C. J., and Bart, G. C. J., “Performance and modeling of latent heat stores,” Solar Energy , Vol. 48, pp. 53-38, 1992
    39.Khan, M. A., and Rohatgi, P. K., “Numerical solution to a moving boundary problem, in a composite medium,” Numerical Heat Transfer, Vol. 25, pp. 209-221, 1994
    40.Alexiades, V., and Solomon, A. D., Mathematical modeling and freezing processes, Hemisphere, Washington, DC, 1993
    41.Lane, G., Solar heat storage: latent heat material, CRC Press, Boca Raton, FL, United States, 2008
    42.Lamberg, P., Lehtiniemi, R., and Henell A. M., “Numerical and experimental investigation of melting and freezing process in phase change material storage,” International Journal of Thermal Sciences, Vol. 43, No. 3 , pp. 277-287, 2004
    43.Voller, V. R., and Cross, M., “Accurate solution of moving boundary problems using the enthalpy method,” International Journal of Heat and Mass Transfer ,Vol. 24, No. 3, pp. 545-556, 1981
    44.Voller, V. R., “A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems,” International Journal of Heat and Mass Transfer ,Vol 30, No. 8, pp. 1709-1719, 1987
    45.Bertrand, O., Binet, B., and Combeau, H., “Melting driven by natural convection,” International Journal of Thermal Sciences, Vol. 38, pp. 5-26, 1999
    46.Zivkovic, B., and Fujii, I., “An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers,” Solar Energy, Vol. 70, pp. 51-61, 2001
    47.Elgafy, A., Mesalhy, O., and Lafdi, K., “Numerical and experimental investigation of melting and solidification processes of high melting point PCM in a cylindrical enclosure,” Journal of Heat Transfer , Vol. 126, pp. 869-875, 2004
    48.Guo, C., and Zhang, W. J., “Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system,” Energy Conversion and Management , Vol. 49, pp. 919-927, 2008
    49.Assis, E., “Numerical and experimental study of melting in a spherical shell,” Internation Journal of Heat and Mass Transfer ,Vol. 50, pp. 1790-1804, 2007
    50.Shatikian, V., Ziskind, G., and Letan, R., “Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux,” Internation Journal of Heat and Mass Transfer , Vol. 51, pp. 1488-1493, 2008
    51.Voller, V. R., and Swaminathan, C. R., “General source-based method for solidification phase change,” Numerical Heat Transfer, part B, Vol. 19, pp. 175-189, 1991
    52.Smith, W. R., “The Propagation and basal solidification of two-dimensional and axisymmetric viscous gravity currents,” Journal of Engineering Mathematics, Vol. 50, pp. 359-378, 2004
    53.Ho, C. J., Chiu, S. Y., and Lin, J. F., “Heat transfer characteristic of a rectangular natural circulation loop containing solid-liquid phase change material suspensions,” Heat Transfer Characteristics, Vol. 15, No. 5 , pp. 441-461, 2004
    54.Adinberg, R., Zvegilsky, D., and Epstein, M., “Heat transfer efficient thermal energy storage for steam generation,” Energy Conversion and Management, Vol. 51, pp. 9-15, 2010
    Advisor
  • Chung-jen Tseng(曾重仁)
  • Files
  • 973203065.pdf
  • approve in 3 years
    Date of Submission 2010-07-14

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.