Title page for 973203061


[Back to Results | New Search]

Student Number 973203061
Author Che-I Kuo(郭哲易)
Author's Email Address 973203061@cc.ncu.edu.tw
Statistics This thesis had been viewed 682 times. Download 327 times.
Department Mechanical Engineering
Year 2010
Semester 1
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Design of a Hydrostatic Pressure Bioreactor for Discussing the Differentiation of Placenta-Derived Multipotent Cells into Osteogenic Cells
Date of Defense 2011-01-17
Page Count 45
Keyword
  • Bioreactor
  • Hydro-static pressure
  • Placenta-derived multipotent cells
  • Tissue engineering
  • Abstract Tissue engineering aims to repair damaged tissue and organs by developing artificial tissue substitutes. To this end, cells are seeded onto three-dimensional scaffolds and cultured in vitro. When cells grow to a certain amount, the cellular scaffold is implanted into patients to repair the impaired tissue. To this end, bioreactor plays an important role. Except providing suitable biochemical environments, a variety of bioreactors have been designed to apply mechanical stimulation to facilitate cell growth, differentiation and the formation of extracellular matrix.
    This thesis used a bioreactor to test the hypothesis that pressure may promote human placenta-derived multipotent cells (PDMCs) to differentiate toward osteoblasts. A self-designed bioreactor that could impose precisely hydrostatic pressure was applied. The bioreactor was able to produce both constant and sinusoidal pressure forms, with precision to 2kPa, the maximum and minimum value at 300 kPa and 10 kPa respectively, and maximum operable frequency at 1 Hz. Experiments were then conducted to test PDMCs under 0 kPa, 10 kPa, 30kPa and 50 kPa with the biochemical Osteogeneic agents added to guide the cells differentiate toward osteoblasts. The levels of cell differentiation were assessed qualitatively by using Alizarin Red S stain (ARS). Results from the experiments showed that applying constant pressure one hour a day was able to promote the differentiation of PDMCs toward osteoblasts. Bigger the pressure value with more intense ARS appeared until the enhancing effect approached a saturated condition at about 30 kPa. In the future, the bioreactor can be used to test the influence of other pressure forms on the cell differentiation as well as growth, and the results may serve as a reference for the development of bone tissue engineering.
    Table of Content 目錄
    中文摘要
    ……………………………………………………………………
    i
    英文摘要
    ……………………………………………………………………
    ii
    誌謝
    ……………………………………………………………………
    iii
    目錄
    ……………………………………………………………………
    iv
    圖目錄
    ……………………………………………………………………
    vi
    第一章
    前言
    1.1 前言
    ……………………………………
    1
    1.2 研究動機
    ……………………………………
    2
    1.3 文獻回顧
    ……………………………………
    3
    1.3.1 壓力對細胞培養的影響
    …………………………
    3
    1.3.2 壓力生物反應器的設計
    …………………………
    6
    1.4 細胞的選用
    ……………………………………
    6
    1.5 實驗構想
    ……………………………………
    7
    第二章
    生物反應器之設計與製作
    2.1 設計前言
    ……………………………………
    8
    2.2 細胞培養部分
    ……………………………………
    9
    2.2.1 培養室設計
    …………………………
    10
    2.2.2 無菌採樣袋
    …………………………
    10
    2.3 壓力驅動部分
    ……………………………………
    10
    2.3.1 壓力值的計算
    ……………………………………
    12
    2.2.2 自動控制回授系統
    …………………………
    12
    2.3.2.1 回授控制硬體架構
    …………………………
    12
    2.3.2.3 回授控制軟體
    …………………………
    13
    2.4 壓力驅動性能測試
    ……………………………………
    14
    v
    第三章
    實驗方法
    3.1 細胞來源
    ……………………………………
    19
    3.2 實驗前置準備
    ……………………………………
    19
    3.2.1 Osteogenic
    ……………………………………
    20
    3.3 壓力式生物反應器實驗步驟
    …………………………
    20
    3.3.1 細胞種植
    …………………………
    20
    3.3.2 初始種植型態觀察
    …………………………
    21
    3.3.3 熱封無菌採樣袋
    …………………………
    21
    3.3.4 實驗組移入加壓系統
    ………………………….
    22
    3.4 系統操作步驟
    …………………………
    22
    3.5 實驗流程
    …………………………
    24
    3.6 細胞分化的分析
    …………………………
    25
    第四章
    實驗結果
    4.1 控制組
    ……………………………………
    26
    4.2 實驗組 (0 kPa)
    ……………………………………
    26
    4.3 實驗組 (10 kPa)
    ……………………………………
    27
    4.4 實驗組 (30 kPa)
    ……………………………………
    27
    4.5 實驗組 (50 kPa)
    ……………………………………
    28
    第五章
    結論與未來展望
    ……………………………………
    37
    參考文獻
    ……………………………………………………………………
    39
    附錄
    實驗試藥及儀器
    ……………………………………
    43
    Reference Carver, S.E., and Heath, C.A. 1999. Semi-continuous perfusion system for delivering intermittent physiological pressure to regenerating cartilage. Tissue Engineering 5, 1-11.
    Chien, C.C., Yen B.L., Lee, F.K., Lai, T.H., Chen, Y.C., Chan, S.H., Huang, H.I., 2006. In Vitro Differentiation of Human Placenta-Derived Multipotent Cells into Hepatocyte-Like Cells. Stem Cells 24, 1759 –1768.
    Griffith, L.G., and Naughton, G., 2002. Tissue Engineering-current challenges and expanding opportunities. Science 295, 1009-1014.
    Heyland, J., Wiegandt, K., Goepfert, C., Nagel-Heyer, S., Ilinich, E., Schumacher U. and Portner R., 2006. Redifferentiation of chondrocytes and cartilage formation under intermittent hydrostatic preesure. Biotechonology Lett 28, 1641-1648.
    Hodge, W.A., Fijan, R.S., Carlson, K.L., Burgess, R.G., Harris, W.H., and Mann, R.W. 1986. Contect pressures in the human hip joint measured in vivo. Proceedings of the National Academy of Sciences of the United States of America 83, 2879-2883.
    Ikenoue, T., Trindade, M.C.D., Lee, M. S., Lin, Eric Y., Schurman, D.J., Goodman, S.B., and Smith, L.R., 2003. Mechanoregulation of human articular chondrodyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. Journal of Orthopaedic Research 21, 110-116.
    Jan, R., Jenneke, K.N., Elisabeth, H.B., 1995. Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. Journal of Biomechanic. 28, 1493-1503.
    Langer, R, and Vacanti, J.P., 1993. Tissue Engineering. Science 260, 920-926.
    Lanza, R.P. Langer, R. Vacanti, J. and Chick, W.L., Principles of Tissue Engineering,
    40
    Annals of Biomedical Engineering , Vol. 27, pp. 580, 1999.
    Lanza, Langer, and Vacanti, 2007. Principles of Tissue Engineering 3rd Edition. Elsevier, N.Y., Chapter 1.
    Lavik, E. and Langer, R. “Tissue engineering: current state and perspectives”, Biotechnol, Vol. 65, pp. 1-8, 2004.
    Luo, Z.J., and Seedhom, B.B., 2007 Light and low-frequency pulsatile hydrostatic pressure enhances extracellular matrix formation by bone marrow mesenchymal cells: an in-vitro study with special reference to cartilage repair. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 221, 499-507.
    Mader, S., and Callian, P., 2001. Understanding human anatomy & physiology. McGraw-Hill, Taipei, 247.
    Makoto, W., Mark, A.A., Joseph, R., and Bauer, E.S., 1997. Effect of pressure on cultured smooth muscle cells. Journal of Life Sciences 61, 987-996.
    Maul, T.M., Hamilton, D.W., Nieponice, A., Soletti, L., Vorp D.A., 2007. A new experimental system for the extended application of cyclic hydrostatic pressure to cell culture. Jornal of Biomechanical Engineering 129, 110-116.
    Miyanishi, K., Trindade, M.C.D., Lindsey, D.P., Beaupre, G.S., Carter, D.R., Goodman, S.B., Schurman, D.J., and Smith, R.L., 2006. Effects of hydrostatic pressure and transforming growth factor-s3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Engineering 12, 1419-1428.
    Mizuno, S., Tateishi, T., Ushida, T., and Glowacki, J., 2002. Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. Journal of Cellular Physiology 193, 319-327.
    Mizuno, S., Watanabe, S., and Takagi, T., 2004. Hydrostatic fluid pressure promotes cellularity and proliferation of human dermal fibroblasts in a three-dimensional
    41
    collagen gel/sponge. Biochemical Engineering Journal 20, 203-208.
    Nagatomi, J., Arulanandam, B.P., Meunier A., and Bizios, R., 2002. Effect of cyclic pressure on bone marrow cell cultures. Journal of Biomechanical Engineering 124, 319-327.
    Nagatomi, J., Arulanadam, B.P., Metzger, D.W., Meunier A., and Bizios R., 2003. Cyclic pressure affects osteoblast functions pertinent to osteogensis. Annals of Biomedical Engineering 31, 917-923.
    Saxena, A.K., 2005. Tissue engineering: resent concepts and strategies. Journal of Indian Association of Pediatric Surgeons 10, 14-19.
    Seyedin, S.M., Thompson, A.Y., Bentz, H., Rosen, D.M., McPherson, J.M., Conti, A., Siegel, N.R., Galluppi, G.R., and Piez, K.A., 1986. Cartilage-inducing factor-A. Apparent identity to transforming growth factor-beta. Journal of Biological Chemistry 261, 5693-5695.
    Shieh, S.J., Terada, S. and Vacanti, J.P., 2004. Tissue engineering auricular reconstruction: in vitro and in vivo studies. Biomaterials 25, 1545-1557.
    Thambyah, A., Pereira, B.P., Wyss, U., 2005. Estimation of bone-on-bone contact forces in the tibiofemoral joint during walking. The Knee 12, 383-388.
    Ute, H., Michael, S., Christian, D., Niki, I., Joachim, H., Thorsten, G., Bodo, K., 2001. Combination of reduced oxygen tension and intermittent hydrostatic pressure: a useful tool in articular cartilage tissue engineering. Journal of Biomechanic 34, 941-949.
    Wang, E.A., Rosen, V., D’Alessandro, J.S., Bauduy, M., Cordes, P., Harada, T., Israel, D.I., Hewick, R.M., Kerns, K.M., and LaPan, P., 1990. Recombinant human bone morphogenetic protein induces bone formation. Proceedings of the National Academy of Sciences 87, 2220-2224.
    Yen, B.L., Huang, H.I., Chien, C.C., Jui, H.Y., Ko, B.S., Yao, M., Shun, C.T., Yen,
    42
    M.L., Lee, M.C., Chen, C.Y., 2005. Isolation of multipotent cells from human term placenta. Stem Cells 23, 3-9
    Yen, M.L., Chien, C.C., Chiu, I.M., Huang, H.I., Chen, Y.C., Hu, H.I., Yen, B.L., 2007. Multilineage differentiation and characterization of the human fetal osteoblastic 1.19 cell line: A possible in vitro model of human mesenchymal progenitors. Stem Cells 25, 125-131
    Yen, B.L., Chien, C.C., Chen, Y.C., Chen, J.T., Huang, J.S., Lee, F.K., Huang, H.I., 2008.Placenta-derived multiotent cells differentiate into neuronal and glial cells in vitro. Tissue Engineering 14, 9-17
    Yu, V., Damek-Poprawa, M., Nicoll, S.B., Akintoye, S.O., 2009. Dynamic hydrostatic pressure promotes differentiation of human dental pulp stem cell. Biochemical and Biophysical Research Communications. 386, 661-665.
    Zhang, W.J., Liu, W., and Cao, Y., 2007. Tissue engineering of blood vessel. Journal of Cellular and Molecular Medicine 11, 945-957.
    Zhang, M., Wang, J.J., Chen, Y.J., 2006. Effect of mechanical pressure on intracellular calcium release channel and cytoskeletal structure in rabbit mandibular condylar chondrocytes. Life Sciences. 78, 2480-2487.
    蘇鴻麟,「再生醫學綜論」,科學發展,Vol. 414, pp.6-11, 2008
    劉貴助,2006,細胞在注流式生物反應器之生長研究,中央大學機械工程學系碩士論文。
    許峻偉,2008,靜水壓力式生物反應器之設計與製作及壓力對骨髓幹細胞增生影響之研究,中央大學機械工程學系碩士論文。
    廖士慶,2009,設計與製作回授控制壓力式生物反應器以探討壓力對骨髓幹細胞增生與型態之影響,中央大學機械工程學系碩士論文。
    Advisor
  • Chih-Ang Chung(鍾志昂)
  • Files
  • 973203061.pdf
  • approve in 2 years
    Date of Submission 2011-01-26

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.