Title page for 973202062


[Back to Results | New Search]

Student Number 973202062
Author Chen-Yuan Kuo(郭鎮源)
Author's Email Address 973202062@cc.ncu.edu.tw
Statistics This thesis had been viewed 649 times. Download 540 times.
Department Civil Engineering
Year 2009
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title The Effect of Runoff and Collapse on the Internal Water Pressure for the Talus
Date of Defense 2010-06-28
Page Count 105
Keyword
  • consolidation
  • dynamic water pressure
  • improvement depth
  • pore water pressure
  • Abstract The rainfall induced infiltration increases the pore water pressure, and leads to cause the failure of the shllow slopes. This study experimentally examines the response of pore water pressure during the progressing of the wetting front for the talus. Both the impact from run-off and the variations of the dynamic water and seek slumping are considered pressure depend on porosity and the depth of soil and falling height of the run-off slumping block. The slumping block generates the higher dynamic water pressure than the impacting water. It is found that the soil layer has a improvement depth, which generates the maximum dynamic water pressure. When the soil layer is less than the improvement depth, the maximum dynamic pore pressure occurs in the bottom. When the run-off impact the soil surface, it causes the soil erosing wear for
    ground surface.
    Table of Content 中文摘要I
    英文摘要II
    誌謝III
    目錄IV
    表目錄VII
    圖目錄VIII
    符號表XI
    第一章 緒論1
    1-1 前言1
    1-2 研究動機2
    1-3 研究目的3
    1-4 本文架構3
    第二章 參考文獻4
    2-1 降雨入滲特性4
    2-2 入渗公式5
    2-2-1 Green and Ampt 入滲公式5
    2-2-2 Richards 非飽和水分傳輸公式6
    2-3 超額孔隙水壓理論7
    2-3-1 水位於堆積面之上,有地表逕流時9
    2-3-2 水位與堆積面齊平10
    2-3-3 水位於堆積面之下,有地下水流時10
    2-4 土壤壓密理論前人研究11
    2-4-1 撞擊重物之撞擊力影響11
    2-4-2 撞擊後土層壓力之分布13
    第三章 研究方法14
    3-1 彈性理論 (Elastic theory)14
    3-1-1 撞擊面所承受之動能14
    3-1-2 撞擊面下方土層的壓力分布15
    3-2 排水條件 (Drainage Conditiona)16
    3-3 孔隙水壓力模式 (Pore pressure model)18
    3-3-1 土壤孔隙水壓力的消散18
    3-3-2 土壤孔隙水壓力的產生19
    3-3-3 土壤孔隙水壓力模式20
    3-4 孔隙水壓力方程式 (Pore pressure equation)21
    3-4-1 土壤孔隙水壓力的消散21
    3-4-2 土壤孔隙水壓力的產生與消散22
    第四章 實驗配置及方法26
    4-1 土壤基本性質測定28
    4-1-1 土壤比重分析28
    4-1-2 土壤粒徑分析28
    4-1-3 定水頭試驗分析31
    4-2 壓力計率定33
    4-3 方型石柱試驗34
    4-3-1 方型石柱入渗試驗34
    4-3-2 方型石柱動水壓逕流沖擊實驗40
    4-3-2 方型石柱動水壓落石撞擊實驗42
    第五章 實驗結果與討論45
    5-1 方型石柱入渗實驗45
    5-2 方型石柱動水壓落石撞擊實驗47
    5-2-1 夯實程度比較48
    5-2-1.1 鬆散排列48
    5-2-1.2 緊密排列48
    5-2-1.3 能量比較50
    5-2-1.4 無因次比較50
    5-2-2 土層厚度比較51
    5-2-2.1 壓力分布比較51
    5-2-2.2 無因次比較51
    5-2-3 顆粒比較52
    5-2-3.1 壓力分布比較52
    5-2-3.2 無因次比較53
    5-3 方型石柱動水壓逕流沖擊實驗53
    5-3-1 夯實程度比較53
    5-3-1.1 鬆散排列54
    5-3-1.2 緊密排列55
    5-3-1.3 能量比較53
    5-3-1.4 無因次比較56
    5-3-2 土層厚度比較57
    5-3-2.1 壓力分布比較57
    5-3-2.2 無因次比較57
    5-3-3 顆粒比較58
    5-3-3.1 壓力分布比較58
    5-3-3.2 無因次比較59
    第六張結論與建議84
    6-1結論84
    6-2建議86
    參考文獻87
    Reference 1. Wang G.., Kyoji Sassa, (2003), ” Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content”, Engineering Geology, 69, 109–125.
    2. Wang G., Kyoji Sassa, Hiroshi Fukuoka; and Takahiro Tada, (2007), “Experimental Study on the Shearing Behavior of Saturated Silty Soils Based on Ring-Shear Tests”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 3.
    3. Hansbo, S., (1978), "Dynamic Consolidation of Soil by a Falling Weight," Ground Engineering, Vol. 11, No. 5 , pp. 27-36
    4. Iverson, .R.M., M.E. Reid & R.G.. LaHusen, (1997), “Debris Flow Mobilization from Landslides”, Annu. Rev. Earth Planet. Sci. 25, 85-138.
    5. Pan, J.L., A.R. Selby, (2002), “Simulation of dynamic compaction of loose granular soils”, Advances in Engineering Software 33, 631–640
    6. Jafarzadeh. F, (2006), “Dynamic Compaction Method in Physical Model Tests”, Scientia Iranica, Vol. 13, No. 2, pp 187-192.
    7. M. Gunaratne, M. Ranganath, S. Thilakasiri, G. Mullins, P. Stinnette, C. Kuot, (1996), “Study of Pore Pressures Induced in Laboratory Dynamic Consolidation”, Computers and Geotechnics, Vol. 18, No. 2, pp. 127-143.
    8. Ng, C. W. W. and Q. Shi, (1998), “A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage”, Computers and Geotechnics, 22(1), 1-28.
    9. P. W. Mayne, J. S. Jones, Jr.,(1983),” IMPACT STRESSES DURING DYNAMIC COMPACTION”, Journal of Geotechnical Engineering, Vol. 109, No. 10.
    10. Poran, C.J. and Rodriguez, J.A., (1992), "Design of dynamic compaction", Canadian Geotechnical Journal, 29(5), pp 796-802
    11. Rahardjo, H., T. T. Lim, M. F. Chang and D. G. Fredlund., (1995), “Shear-Strength Characteristics of a Residual Soil”, Canadian Geotechnical Journal, 32(1), 60-77.
    12. 日本道路協會(1986),"共同溝設計指針"。
    13. 周憲德、廖偉民,「孔隙水壓對溪床土石流發生機制之影響」,中華水土保持學報,第二十九卷,第三期,1998 年,第211-217 頁。
    14. 林美聆、王幼行,「地表水及地下水對土石流破壞型態之影響」,地工技術, 第七十四期,1999年,第29-38 頁。
    15. 廖偉民,「土石流潛勢判定模式及土石壩滲流破壞之研究」,博士論文,國立中央大學土木工程研究所,中壢,2001。
    16. 林志欣,「圓型砂柱探討入滲效應之研究」,碩士論文,國立中央大學土木工程研究所,中壢,2005。
    Advisor
  • Hsien-Ter Chou(周憲德)
  • Files
  • 973202062.pdf
  • approve immediately
    Date of Submission 2010-08-01

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.