Title page for 972206043


[Back to Results | New Search]

Student Number 972206043
Author Chun-lin Wang(王俊霖)
Author's Email Address No Public.
Statistics This thesis had been viewed 583 times. Download 505 times.
Department Optics and Photonics
Year 2009
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Single aperiodically poled lithium niobate for simultaneous laser Q-switching and optical parametric generation in a Nd:YVO4 laser
Date of Defense 2010-07-10
Page Count 77
Keyword
  • aperiodically
  • lithium niobate
  • ptical parametric generation
  • Q-switching
  • Abstract Optical parametric oscillators (OPOs) can produce wavelength tunable coherent light sources and have been widely used in various applications including the remote sensing, spectroscopy, nonlinear optics, range finder, optical communications, and bio-medicine.

      Several high-efficiency intracavity wavelength converters have been developed via the use of a nonlinear crystal in an acousto-optic or electro-optic (EO) Q-switched solid-state laser. However, a more compact integrated system performing the same device functions is still rare.

      In this thesis, we have devoted to integrate two device functions in a monolithic LiNbO3 crystal. These two devices are an EO Q-switching and an optical parametric generator (OPG). An aperiodically poled lithium niobate (APLN) crystal has been designed and fabricated in this work to simultaneously satisfy the phase-matching conditions required for functioning the two devices. We further inserted this APLN crystal in a Nd:YVO4 laser system to simultaneously function as a laser Q switch and an intracavity optical parametric amplifier.

      We have successfully demonstrated an efficient EO Q-switched IOPO in a compact diode-pumped 1064-nm Nd:YVO4 laser achieved using a single intracavity APLN.The APLN device was designed using the SA optimization method. It can simultaneously function as an EO Q-switch and an OPG.The OPO efficiency achieved with the system using the APLN device has been ~1.67 times higher than that with a system using a cascade PPLN device of the same device length and under the same system operating conditions. When the intracavity APLN was driven with a ~ 360-V pulse train at 1 kHz, we observed ~ 33 %  energy depletion in fundamental laser pulses, yielding ~ 5-ns, ~ 1029W peak-power 1550-nm OPO laser pulses from this compact laser system pumped at 8.4-W diode power.
    Table of Content 目錄
    第一章緒論………………………………………………………………1
      1-1 簡介……………………………………………………………1
      1-2 研究動機………………………………………………………5
      1-3 內容概要………………………………………………………6
    第二章理論………………………………………………………………7
      2-1 準相位匹配原理………………………………………………7
      2-2索爾克濾波器(Šolc type filters)……………………………12
      2-3 利用鈮酸鋰晶體製作索爾克濾波器(Šolc type filters)(EO
        PPLN)………………………………………………………14
      2-4 光參量產生器………………………………………………23
      2-5 非週期性反轉之鈮酸鋰晶體………………………………26
    第三章元件設計及製程………………………………………………29
      3-1 元件設計-模擬退火法………………………………………29
      3-2 元件製程……………………………………………………32
    第四章實驗量測及模擬結果分析……………………………………37
      4-1 實驗架構……………………………………………………37
      4-2 模擬結果……………………………………………………40
      4-3 量測結果……………………………………………………44
      4-4 結果分析……………………………………………………55
    第五章結論與未來展望………………………………………………56
      5-1 結論…………………………………………………………56
      5-2 未來展望……………………………………………………56
    第六章 參考文獻………………………………………………………61
    圖目錄
    圖1-1-1 轉換效率圖……………………………………………………3
    圖1-1-2 EO PPLN半波電場和脈寬圖…………………………………3
    圖1-1-3 利用單片非週期性晶疇極化反轉鈮酸鋰晶體作為Nd:YVO4
        雷射Q-調制和腔內二倍頻轉換架構示意圖…………………4
    圖1-1-4 671nm紅光脈寬和尖峰功率圖………………………………4
    圖1-2-1 串級式週期性和非週期性晶疇極化反轉鈮酸鋰晶體示意
    ????????????????圖………………………………………………………………5
    圖2-1-1 能量和動量守恆示意圖………………………………………7
    圖2-1-2 準相位匹配動量守恆示意圖…………………………………8
    圖2-1-3 準相位匹配晶體構造示意圖…………………………………9
    圖2-2-1 半波板示意圖………………………………………………12
    圖2-2-2 Šolc Type Filter架構示意圖…………………………………13
    圖2-3-1 鈮酸鋰晶體在外加電場後光軸的轉動示意圖……………18
    圖2-3-2 鈮酸鋰晶體電光係數與座標軸關係示意圖………………19
    圖2-3-3 鈮酸鋰晶體作為索爾克濾波器示意圖……………………20
    圖2-3-4 對波長1064nm之不同長度PPLN濾波器頻譜分佈圖……22
    圖3-1-1 模擬退火法之流程圖………………………………………30
    圖3-2-1 黃光微影流程圖……………………………………………33
    圖3-2-2 極化反轉製程流程示意圖…………………………………33
    圖3-2-3 鈮酸鋰極化反轉過程示意圖………………………………34
    圖3-2-4 晶體+Z面Etching過後之圖形………………………………35
    圖4-1-1 APLN、晶片載具與電極配置圖……………………………37
    圖4-1-2 實驗架構圖…………………………………………………38
    圖4-1-3 實驗架構實際圖……………………………………………38
    圖4-2-1 APLN(domain=7.1um)與相對OPG-PPLN增益比較圖……40
    圖4-2-2 APLN(domain=7.1um)所需半波電場圖……………………41
    圖4-2-3 APLN(domain=5um)與相對OPG-PPLN增益比較圖………41
    圖4-2-4 APLN(domain=5um)所需半波電場圖……………………42
    圖4-2-5 APLN(domain=4um)與相對OPG-PPLN增益比較圖………42
    圖4-2-6 APLN(domain=4um)所需半波電場圖……………………43
    圖4-3-1 測量APLN轉偏振角度對於電壓的影響架構圖……………44
    圖4-3-2 1064 nm 穿透率對電場施加作圖(APLN) …………………45
    圖4-3-3 1064 nm 穿透率對電場施加作圖(Caseacade PPLN) ……45
    圖4-3-4 光參量產生器和光參量振盪器之頻譜分析比較圖………48
    圖4-3-5 光參量產生器和光參量振盪器之頻譜分析比較圖………49
    圖4-3-6 1064nm和1550nm非相位匹配和頻轉換630nm紅光圖……50
    圖4-3-7 1550nm尖峰功率和脈寬對泵浦強度作圖………………51
    圖4-3-8 1550nm最窄脈寬和1064nm雷射脈衝損耗圖……………52
    圖4-3-9 1550nm尖峰功率和脈寬對泵浦強度作圖…………………52
    圖4-3-10 1550nm最窄脈寬和1064nm雷射脈衝損耗圖………………53
    圖4-3-11 1550nm雷射脈衝連續圖……………………………………54
    圖5-2-1 APLN與相對OPG-PPLN增益比較圖……………………55
    圖5-2-2 APLN所需半波電場圖……………………………………56
    圖5-2-3 實驗架構:利用Nd:MgO:APLN作為同時供應增益、調制
         和光參量產生器的機制……………………………………57
    圖5-2-4 Nd:MgO:APLN與相對OPG-PPLN增益比較圖…………58
    圖5-2-5 Nd:MgO:APLN所需半波電場圖……………………………58
    表目錄
    表2-2-1 鈮酸鋰晶體的Sellmeier equation 參數……………………15
    表2-2-2 鈮酸鋰晶體在波長0.6328μm下各項電光係數…………16
    Reference [1.1]  Physics Today, pp.72 Oct. 2007
    [1.2]  W. H. Zachariasen ,Skr. Norske Vid-Ada. , Oslo ,Mat. Naturv. 
        No.4(1928)
    [1.3]  Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and
        M. H. Chou,"Nonlinear multiwavelength conversion based on an
        aperiodic opticalsuperlattice in lithium niobate," Opt. Lett. 27,
        2191-2193 (2002)
    [1.4]  Y. H. Chen and Y. C. Huang ,” Actively Q-switched Nd:YVO 4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett. 28, No. 16 (2003)
    [1.5]  Y. H. Chen,W. K. Chang, C. L. Chang, and C. H. Lin,” Single aperiodically poled lithium niobate for simultaneous laser Q switching and second-harmonic generation in a 1342 nm
    Nd:YVO 4 laser”, Optics Letters, Vol. 34, Issue 11, pp. 1711-1713 (2009)
    [1.6]  S. Kirkpatrick,C. D. Gelatt, Jr. ,M.P.Vecchi “Optimization by
        Simulated Annealing”13 May 1983,Volume 220, Number 4598
        SCIENCE
    [2.1]  J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan,
        Phys. Rev. 127, 1918 (1962).
    [2.2]  Yen-Chieh Huang, ”Principles of Nonlinear Optics Course Reader ”國立清華大學(2002)
    [2.3]  “Pulsed orange, green, and red laser generations in an actively  Q-switched Nd:YVO 4 laser using cascaded electro-optic PPLN Q-switches”, 中央大學光電科學研究所碩士論文,張煒堃,中華民國九十八年六月
    [2.4]  D. H. Jundt, "Temperature-dependent Sellmeier equation for the
        index of refraction, ne, in congruent lithium niobate," Opt. Lett.
        22, 1553-1555(1997)
    [2.5]  A. Yariv and P. Yeh, Optical waves in Crystals, Wiley, New
        York (1983)
    [2.6]  J. Shi, X. Chen, Y. Xia, Y. Chen “Electro-optical polarization
        controller based on solc filter in periodically poled lithium
        niobate” SPIE 65 Vol. 4905(2002)
    [2.7] Gerald T. Moore , Karl Koch,” Optical Parametric Oscillation with Intracavity Sum-Frequency Generation”, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL 29, NO 3, MARCH 1993
    [2.8] R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,”IEEE J. Quantum Electron., vol. QE-15, pp. 432-444, 1979.
    [2.9] Notation and properties of elliptic integrals and Jacobi elliptic functionstaken from M. Abramowitz and I. A. Stegan, Handbook of Mathematical Functions.
    [2.10]  J. A. Giordmaine and R. C. Miller, "Tunable coherent parametric 
        oscillation in LiNbO3 atoptical frequencies," Phys. Rev. Lett., 14,
        973–976 (1965). doi:10.1103/PhysRevLett.14.973
    [2.11]  L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L.
        Byer, and W. R. Bosenberg,"Quasi-phase-matched
        1.064-μm-pumped optical parametric oscillator in bulk
        periodicallypoled LiNbO3," Opt. Lett. 20, 52-54 (1995). doi:
        10.1364/OL.20.000052
    [2.12] C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Huang, and J. Y. Chang,"Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate," Opt. Express 15, 9859-9866 (2007)
    [3.1]  J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a Lithium Niobate channel waveguide,” IEEE Photon Techonol. Lett., 1, p316-318 (1989)
    [3.2]  “PERIODICALLY POLED LITHIUM NIOBATE: MODELING, FABRICATION, AND NONLINEAR-OPTICAL PERFORMANCE” ,Gregory David Miller July 1998,Department of Electric Engineering, Stanford University
    [3.3]  Alan C. G. Nutt, Venkatraman Gopalan, and Mool C.Gupta,“Domain inversion in LiNbO3 using direct electron-beamwriting,” Appl. Phys. Lett., 60, p2828-2830 (1992)
    [3.4]  “NUCLEATION CONTROL FOR A UNIFORM PERIODICALLYPOLED STRUCTURE” Y. Nomura, N.E.Yu, S. Kurimura, and K.Kitamura National Institute for Materials Science (NIMS) H. Seki, M.Maruyama, Y. Kato, H. Nakajima Department of Applied Physics,Waseda University J. H. Ro Department of Medical Engineering, PusanNational University Y. Gotoh Department of Material Science andTechnology, Tokyo University of Scienc
    [3.5]  T. Akutsu, H. Seki, M. Maruyama, H. Nakajima, S. Kurimura, K. Kitamura, H. Ishizuki, and T. Taira, "Selective nucleation control inperiodical poling for quasi-phase-matched wavelength converters", CLEO/QELS 2002, CFE4 (2002)
    Advisor
  • Y. H. Chen(陳彥宏)
  • Files
  • 972206043.pdf
  • approve in 1 year
    Date of Submission 2010-08-27

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.