Title page for 972206022


[Back to Results | New Search]

Student Number 972206022
Author Chung-Chun Kuo(郭中竣)
Author's Email Address chungchunkuo@gmail.com
Statistics This thesis had been viewed 669 times. Download 251 times.
Department Optics and Photonics
Year 2010
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Locally resonant phononic filter
Date of Defense 2011-06-23
Page Count 79
Keyword
  • Helmholtz resonator
  • phononic crystal
  • Abstract This work demonstrates the influences of various structural parameters on resonant modes at lower and higher frequencies with the normal incidence of the Helmholtz resonators. From observing the field distribution, the spring-mass model is introduced to explain the resonant modes of the Helmholtz resonators. After, we use the measurement to show the accuracy of the simulation results and the reasonable of the spring-mass model.
      For the simulation, the Finite-Difference Time-Domain method is applied to calculate the transmission spectra of the Helmholtz resonators. The stable pressure and velocity fields are obtained by launching the continuous wave into the structure at lower and higher resonant frequency, respectively. From the field distributions, the comparisons of the resonant frequencies with various structural parameters between the spring-mass models and the simulation results are in good agreement.
      For the measurement, we design two different methods to fabricate the Helmholtz resonators. The ultrasonic immersion transmission technique is applied to measure transmission spectra of Helmholtz resonators. The transmission dips with resonant modes at lower and higher frequencies are observed in both two different types of the Helmholtz resonators. The transmission can be as low as -30dB and -27dB for the resonant modes at higher and lower frequencies, respectively. The results can be applied to the design of a narrow pass band acoustic filter.
    Table of Content 第一章緒論1
    1.1 研究動機1
    1.2 文獻回顧4
    1.3 結論7
    第二章基本原理8
    2.1 荷姆霍茲共振器8
    2.2 彈性波在材料中傳播行為21
    2.3 數值分析方法25
    2.3.1有限時域差分法(Finite-Difference Time-Domain, FDTD) 25
    2.3.2 穩態場的處理32
    2.4 結論33
    第三章荷姆霍茲共振濾波器35
    3.1 緒論35
    3.2 FDTD模擬結構與結果35
    3.3 結論48
    第四章元件製作與量測49
    4.1 侷域共振聲子濾波器的製作49
    4.2 量測系統和量測結果與討論54
    4.3 誤差討論62
    4.4 結論69
    第五章總結與未來展望72
    5.1 結論72
    5.2 未來展望73
    參考文獻 76
    Reference [1]M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites”, Phys. Rev. Lett., Vol. 71,No. 13, pp. 2022-2025, 1993.
    [2]Yukihiro Tanaka and Shin-ichiro Tamura, “Surface acoustic waves in two-dimensional periodic elastic structures”, Phys. Rev. B,Vol. 58, No. 12, pp. 7958-7965, 1998.
    [3]R. Sainidou, B. Djafari-Rouhani, and J. O. Vasseur, “Surface acoustic waves in finite slabs of three-dimensional phononic crystals”, Phys. Rev. B,Vol. 77, pp. 094304, 2008.
    [4]F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sánchez-Dehesa, C. López and J. Llinares, “Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal”, Phys. Rev. B,Vol. 59, pp. 12169, 1999
    [5]Nicholas Fang, Dongjuan Xi, Jianyi Xu, Muralidhar Ambati, Werayut Srituravanich, Cheng Sun and Xiang Zhang, “Ultrasonic metamaterials with negative modulus”, Nature Mater., Vol. 5, pp. 452 - 456, 2006.
    [6]X. Hu, C. T. Chan and J. Zi, “Two-dimensional sonic crystals with Helmholtz resonators”, Phys. Rev. E, Vol. 71, pp. 055601, 2005.
    [7]Z. G. Wang, S. H. Lee, C. K. Kim, C. M. Park, K. Nahm and S. A. Nikitov, “Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators”, J. Appl. Phys.,Vol. 103, pp. 064907, 2008
    [8]X. Hu, K. M. Ho, C. T. Chan and J. Zi, “Homogenization of acoustic metamaterials of Helmholtz resonators in fluid”, Phys. Rev. B, Vol. 77, pp. 172301, 2008.
    [9]Y. Cheng, J. Y. Xu and X. J. Liu, “Broad forbidden bands in parallel-coupled locally resonant ultrasonic metamaterials”, Appl. Phys. Lett., Vol. 92, pp. 051913, 2008.
    [10]I. E. Psarobas, N. Stefanou and A. Modinos, “Phononic crystals with planar defects”, Phys. Rev. B, Vol. 62, pp. 5536-5540, 2000.
    [11]Heng Jiang, Yuren Wang, Milin Zhang, Yanping Hu, Ding Lan, Yinmin Zhang, and Bingchen Wei, “Locally resonant phononic woodpile: A wide band anomalous underwater acoustic absorbing material”, Appl. Phys. Lett., Vol. 95, pp. 104101, 2009.
    [12]Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan and P. Sheng, “Locally resonant sonic materials”, Science, Vol. 289, pp. 1734, 2000.
    [13]C. Goffaux, J. Sánchez-Dehesa, A. Levy Yeyati, Ph. Lambin, A. Khelif, J. O. Vasseur and B. Djafari-Rouhani, “Evidence of Fano-like interference phenomena in locally resonant materials”, Phys. Rev. Lett., Vol. 88, pp. 225502, 2002.
    [14]J. C. Hsu and T. T. Wu, “Lamb waves in binary locally resonant phononic plates with two-dimensional lattices”, Appl. Phys. Lett., Vol. 90, pp. 201904, 2007.
    [15]G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, “Two-Dimensional Locally Resonant Phononic Crystals with Binary Structures”, Phys. Rev. Lett., Vol. 93, pp. 154302 , 2004.
    [16]R. Sainidou, B. Djafari-Rouhani, Y. Pennec, and J. O. Vasseur, “Locally resonant phononic crystals made of hollow spheres or cylinders”,Phys. Rev. B, Vol. 73, pp. 024302 , 2006.
    [17]Y. Cheng, J. Y. Xu, and X. J. Liu, “One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus”, Phys. Rev. B, Vol. 77, pp. 045134, 2008.
    [18]Chae Hoon Sohn, Ju Hyun Park, “A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators”, Aerospace Science and Technology, 2011.
    [19]Torbjörn A. Johansson and Mendel Kleiner, “Theory and experiments on the coupling of two Helmholtz resonators”, J. Acoust. Soc. Am., Vol. 110, Issue 3, pp. 1315-1328, 2001.
    [20]Ahmet Selamet and Iljae Lee, “Helmholtz resonator with extended neck”, J. Acoust. Soc. Am., Vol. 110, Issue 4, pp. 1975-1985, 2003.
    [21]A. Selamet and P. M. Radavich, N. S. Dickey, J. M. Novak, “Circular concentric Helmholtz resonators”, J. Acoust. Soc. Am., Vol. 101, Issue 1, pp. 41-51, 1997.
    [22]David R. Smith and Norman Kroll, “Negative Refractive Index in Left-Handed Materials”, Phys. Rev. Lett.,Vol 85, pp. 2933 , 2000
    [23]Ashwin K. Iyer, Peter C. Kremer and George V. Eleftheriades, “Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial”, Opt. Express, Vol. 11, No. 7, 2003
    [24]Anthony Grbic and GeorgeV. Eleftheriades, “Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens”, Phys. Rev. Lett.,Vol 92, No. 117403 , 2004
    [25]Zubin Jacob, Leonid V. Alekseyev and Evgenii Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit”, Opt. Express, Vol. 14 Issue 18, pp.8247-8256, 2006.
    [26]Jensen Li, Lee Fok, Xiaobo Yin, Guy Bartal and Xiang Zhang, “Experimental demonstration of an acoustic magnifying hyperlens”, Nature Mater., Vol. 8, pp. 931 - 934, 2009
    [27]J. B. Pendry, D. Schurig, D. R. Smith, “Controlling Electromagnetic Fields”, Science, Vol 312, no. 5781 pp. 1780-1782, 2006
    [28]D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies”, Science, Vol 314, pp. 977, 2006
    [29]Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, “Fundamentals of Acoustics”, Fourth edition, Wiley, 2000.
    [30]丁昌林、趙曉鵬, “可聽聲頻段的聲學超材料”, 物理學報, Vol. 58, No. 9, 2009.
    [31]Haluk Erol and Cem Meric, “Application of resonators and a side branch duct with an expansion chamber for broad band noise control”, Noise Control Eng. J., Vol. 57, Issue 5, pp. 476-492, 2009.
    [32]Y. Cheng, J. Y. Xu, and X. J. Liu, “One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus”, Phys. Rev. B, Vol. 77, pp. 045134, 2008.
    [33]Y. Cheng, J. Y. Xu, and X. J. Liu, “Broad forbidden bands in parallel-coupled locally resonant ultrasonic metamaterials”, Appl. Phys. Lett., Vol. 92, pp. 051913, 2008.
    [34]杜功煥、朱哲民、龚秀芬, “声學基础”, 第二版, 南京大學出版社, 2001.
    [35]B.A. AULD, “Acoustic Fields and Wave in Solids”, Wiley, 1973.
    [36]M. M. Sigalas, N. Garcia, “Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method”, J. Appl. Phys., Vol 87, No. 6, 2000.
    [37]Julius G. Tolan, John B. Schneider, “Locally conformal method for acoustic finite-difference time-domain modeling of rigid surfaces”, J. Acoust. Soc. Am., Vol. 114, No. 5.
    [38]簡宏達, “二維雙輸入雙輸出光子晶體分光器”, 國立中央大學光電科學研究所碩士論文, 2004.
    [39]Fu-Li Hsiao, Chia-Hua Chan, Chii-Chang Chen, and Kuei-Chu Hsu, “Acoustic resonant leaky mode effects”, Appl. Phys. Lett., Vol. 94, pp. 044101, 2009.
    [40]A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal”, Phys. Rev. B, Vol. 68, pp. 214301, 2003.
    Advisor
  • Fu-Li Hsiao(蕭輔力)
  • Chii-Chang Chen(陳啟昌)
  • Files
  • 972206022.pdf
  • approve in 1 year
    Date of Submission 2011-07-13

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.