Title page for 972204029


[Back to Results | New Search]

Student Number 972204029
Author Jia-Cheng Kuo(郭家誠)
Author's Email Address No Public.
Statistics This thesis had been viewed 1014 times. Download 888 times.
Department Life Science
Year 2009
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Development of a platform for biodiesel production
Date of Defense 2010-06-22
Page Count 46
Keyword
  • biodiesel
  • Abstract Biodiesel is an alternative energy source and a substitute for petrochemical diesel fuels. Transferification of triacylglycerols from plant oil or waste biomass yields monoalky esters of long-chain fatty acids with short chain alcohol such as fatty acid methyl esters. More attention has recently focused on the application of genetically engineered microalgae in the production of biodiesel. The reaction of acetyl-CoA to malonly-CoA is catalyzed by acetyl-CoA carboxylase (ACCase). ACCase is often regarded as the first committed step of the fatty acid synthetic pathway. My aim is to increase the lipid content of the cell through enhancing the expression of ACCase. Cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) is one of the best-characterized microalgae species and, given its robust growth characteristic, becomes the organism of choice for applications. Detailed studies on techniques for genetic manipulation of this species are available. Unfortunately, no suitable vector for cyanobacteria is courrently available. Therefore, the thesis has two main aims: (1) cloning ACCase on expression vector. (2) constructing a E.coli / Synechocystis suitable shuttle vector for efficient gene cloning and functional assays. My results show that overexpression of ACCase increases the lipid content of the cells. In addition, the shuttle vector constructed was transformed into Synechocystis for testing. As it turned out, it conferred antibiotic resistance to the cell and could be recovered as a plasmid form.
    Table of Content 中文摘要i
    ABSTRACTii
    誌   謝iii
    目   錄iv
    圖 目 錄vii
    表 目 錄viii
    第一章 緒論1
    1.1 生質能源的簡介1
    1.1.1 何謂生質能源1
    1.1.2 生質能源的演進2
    1.2 生質柴油的簡介3
    1.2.1 生質柴油的介紹3
    1.1.2 生質柴油的製程4
    1.3 Acetyl-CoA carboxylase (ACCase)的簡介6
    1.3.1 ACCase的生化特性6
    1.3.2原核ACCase的介紹7
    1.3.3真核 ACCase的介紹8
    1.4藍綠菌Synechocystis sp. PCC 6803的簡介10
    1.5 實驗目的12
    第二章 材料與方法14
    2.1菌株、載體及培養基14
    2.2大腸桿菌勝任細胞的製備與轉型作用15
    2.2.1大腸桿菌勝任細胞的製備16
    2.2.2大腸桿菌勝任細胞的轉型作用17
    2.3酵母菌勝任細胞的製備與轉型作用17
    2.3.1酵母菌勝任細胞的製備17
    2.3.2酵母菌勝任細胞的轉型作用18
    2.5建構穿梭載體19
    2.6質體之選殖20
    2.7蛋白質製備21
    2.8 SDS-PAGE之蛋白質分子量分析22
    2.9西方點墨法22
    2.10細胞內脂質的測定24
    第三章 結果25
    3.1測試穿梭載體的功能25
    3.2 ACCase的表現27
    3.3 ACCase送入細胞後,胞內脂質含量的改變28
    第四章 討論 30
    參考文獻33
    Reference Al-Feel, W., Chirala, S.S., and Wakil, S.J. (1992). Cloning of the yeast FAS3 gene and primary structure of yeast acetyl-CoA carboxylase. Proc Natl Acad Sci U S A 89, 4534-4538.
    Angermayr, S.A., Hellingwerf, K.J., Lindblad, P., and de Mattos, M.J. (2009). Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20, 257-263.
    Aurora, R., Hihara, Y., Singh, A.K., and Pakrasi, H.B. (2007). A network of genes regulated by light in cyanobacteria. OMICS 11, 166-185.
    Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol Adv 25, 294-306.
    Chiu, Y.F., Lin, W.C., Wu, C.M., Chen, Y.H., Hung, C.H., Ke, S.C., and Chu, H.A. (2009). Identification and characterization of a cytochrome b559 Synechocystis 6803 mutant spontaneously generated from DCMU-inhibited photoheterotrophical growth conditions. Biochim Biophys Acta 1787, 1179-1188.
    Chu, H.A., Nguyen, A.P., and Debus, R.J. (1994). Site-directed photosystem II mutants with perturbed oxygen-evolving properties. 1. Instability or inefficient assembly of the manganese cluster in vivo. Biochemistry 33, 6137-6149.
    Cronan, J.E., Jr., and Waldrop, G.L. (2002). Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 41, 407-435.
    Davis, M.S., Solbiati, J., and Cronan, J.E., Jr. (2000). Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275, 28593-28598.
    Dzelzkalns, V.A., and Bogorad, L. (1986). Stable transformation of the cyanobacterium Synechocystis sp. PCC 6803 induced by UV irradiation. J Bacteriol 165, 964-971.
    Eaton-Rye, J.J. (2004). The construction of gene knockouts in the cyanobacterium Synechocystis sp. PCC 6803. Methods Mol Biol 274, 309-324.
    Gill, R.T., Katsoulakis, E., Schmitt, W., Taroncher-Oldenburg, G., Misra, J., and Stephanopoulos, G. (2002). Genome-wide dynamic transcriptional profiling of the light-to-dark transition in Synechocystis sp. strain PCC 6803. J Bacteriol 184, 3671-3681.
    Guchhait, R.B., Polakis, S.E., Dimroth, P., Stoll, E., Moss, J., and Lane, M.D. (1974). Acetyl coenzyme A carboxylase system of Escherichia coli. Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components. J Biol Chem 249, 6633-6645.
    Hasslacher, M., Ivessa, A.S., Paltauf, F., and Kohlwein, S.D. (1993). Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem 268, 10946-10952.
    Herrero, A., Muro-Pastor, A.M., and Flores, E. (2001). Nitrogen control in cyanobacteria. J Bacteriol 183, 411-425.
    Hubschmann, T., Yamamoto, H., Gieler, T., Murata, N., and Borner, T. (2005). Red and far-red light alter the transcript profile in the cyanobacterium Synechocystis sp. PCC 6803: impact of cyanobacterial phytochromes. FEBS Lett 579, 1613-1618.
    Ikeuchi, M., and Tabata, S. (2001). Synechocystis sp. PCC 6803 - a useful tool in the study of the genetics of cyanobacteria. Photosynth Res 70, 73-83.
    Imamura, S., Tanaka, K., Shirai, M., and Asayama, M. (2006). Growth phase-dependent activation of nitrogen-related genes by a control network of group 1 and group 2 sigma factors in a cyanobacterium. J Biol Chem 281, 2668-2675.
    Jitka Kruinská (2007). Construction of expression vector for cyanobacterium Synechocystis sp. PCC 6803. University of South Bohemia, Bachelor thesis.
    Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., et al. (1996). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3, 109-136.
    Kaneko, T., and Tabata, S. (1997). Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 38, 1171-1176.
    Kim, K.H. (1997). Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr 17, 77-99.
    Knowles, J.R. (1989). The mechanism of biotin-dependent enzymes. Annu Rev Biochem 58, 195-221.
    Koksharova, O.A., and Wolk, C.P. (2002). Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58, 123-137.
    Korbitz W. (1996). Biodiesel production in Europe and North America. An encouraging prospect. Renew Energy 16, 1078–83.
    Kufryk, G.I., Sachet, M., Schmetterer, G., and Vermaas, W.F. (2002). Transformation of the cyanobacterium Synechocystis sp. PCC 6803 as a tool for genetic mapping: optimization of efficiency. FEMS Microbiol Lett 206, 215-219.
    Kufryk, G.I., and Vermaas, W.F. (2003). Slr2013 is a novel protein regulating functional assembly of photosystem II in Synechocystis sp. strain PCC 6803. J Bacteriol 185, 6615-6623.
    Kuhlemeier, C.J., Hardon, E.M., van Arkel, G.A., and van de Vate, C. (1985). Self-cloning in the cyanobacterium Anacystis nidulans R2: fate of a cloned gene after reintroduction. Plasmid 14, 200-208.
    Lapinskiene, A., Martinkus, P., and Rebzdaite, V. (2006). Eco-toxicological studies of diesel and biodiesel fuels in aerated soil. Environ Pollut 142, 432-437.
    Montgomery, B.L. (2007). Sensing the light: photoreceptive systems and signal transduction in cyanobacteria. Mol Microbiol 64, 16-27.
    Munday, M.R., and Hemingway, C.J. (1999). The regulation of acetyl-CoA carboxylase--a potential target for the action of hypolipidemic agents. Adv Enzyme Regul 39, 205-234.
    Muro-Pastor, A.M., Herrero, A., and Flores, E. (2001). Nitrogen-regulated group 2 sigma factor from Synechocystis sp. strain PCC 6803 involved in survival under nitrogen stress. J Bacteriol 183, 1090-1095.
    Nakamura, Y., Kaneko, T., and Tabata, S. (2000). CyanoBase, the genome database for Synechocystis sp. strain PCC6803: status for the year 2000. Nucleic Acids Res 28, 72.
    Nakasugi, K., Svenson, C.J., and Neilan, B.A. (2006). The competence gene, comF, from Synechocystis sp. strain PCC 6803 is involved in natural transformation, phototactic motility and piliation. Microbiology 152, 3623-3631.
    Osanai, T., Imamura, S., Asayama, M., Shirai, M., Suzuki, I., Murata, N., and Tanaka, K. (2006). Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803. DNA Res 13, 185-195.
    Osanai, T., Kanesaki, Y., Nakano, T., Takahashi, H., Asayama, M., Shirai, M., Kanehisa, M., Suzuki, I., Murata, N., and Tanaka, K. (2005). Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor sigE. J Biol Chem 280, 30653-30659.
    Ranganathan, S.V., Narasimhan, S.L., and Muthukumar, K. (2008). An overview of enzymatic production of biodiesel. Bioresour Technol 99, 3975-3981.
    Rippka, R., J. Deruelles, J. Waterbury, M. Herdman and R. Stanier. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61
    Tong, L. (2005). Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 62, 1784-1803.
    US National Biodiesel Board (2008).http://www.biodiesel.org/pdf_files/fuelfactsheets/BDSpec.pdf
    Van der Plas, J., Hegeman, H., de Vrieze, G., Tuyl, M., Borrias, M., and Weisbeek, P. (1990). Genomic integration system based on pBR322 sequences for the cyanobacterium Synechococcus sp. PCC7942: transfer of genes encoding plastocyanin and ferredoxin. Gene 95, 39-48.
    Vermaas, W.F., Williams, J.G., Rutherford, A.W., Mathis, P., and Arntzen, C.J. (1986). Genetically engineered mutant of the cyanobacterium Synechocystis 6803 lacks the photosystem II chlorophyll-binding protein CP-47. Proc Natl Acad Sci U S A 83, 9474-9477.
    Wada, H., Gombos, Z., and Murata, N. (1990). Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347, 200-203.
    Wakil, S.J., Stoops, J.K., and Joshi, V.C. (1983). Fatty acid synthesis and its regulation. Annu Rev Biochem 52, 537-579.
    Yoshihara, S., Geng, X., Okamoto, S., Yura, K., Murata, T., Go, M., Ohmori, M., and Ikeuchi, M. (2001). Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 42, 63-73.
    Advisor
  • Chien-Chia Wang(王健家)
  • Files
  • 972204029.pdf
  • approve in 2 years
    Date of Submission 2010-06-28

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.