Title page for 972202022


[Back to Results | New Search]

Student Number 972202022
Author Yen-Shuo Su(Ĭۺ)
Author's Email Address No Public.
Statistics This thesis had been viewed 407 times. Download 139 times.
Department Physics
Year 2009
Semester 2
Degree Master
Type of Document Master's Thesis
Language English
Title Quenching dusty plasma liquids
Date of Defense 2010-07-01
Page Count 63
Keyword
  • dusty plasma liquid
  • glass
  • quench
  • Abstract Fast cooling can make liquids maintain its disordered structure even below the melting temperature. It is a way to turn liquids into the glassy state. In general, the glass is the system which has solid-like behaviors (elastic response) for our typical observation time scale and liquid-like behaviors (plastic flow) for extremely long observation time. Why the fast cooling rate can prevent material crystallizing, and why the glass can exhibit so distinct properties at different observation time scales are old puzzles and an open issue. In order to answer these questions, studying the transient process of the quenched liquid microscopically may be a way to deeply understand the origin of glassy systems. However to directly observe this quenching process microscopically is still a challenge due to the spatiotemporal scale (too small and too fast).
    The dusty plasma liquid is formed by the negatively charged micro-meter size dust particles suspended in low pressure gaseous discharge. The spatiotemporal characteristic scale makes it possible to mimic the real liquid and investigate the micro-motion of the liquid at kinetic level. Spatially, the particles could exhibit distinct dynamics, caged and hopping motion, due to the background excitation. Recently, the increase of the degree of heterogeneity between caged and hopping motion is considered as a universal law near the glass transition. In the dusty plasma system, the rf discharge power can be tuned to decrease background temperature instantaneously, namely quenching. In this work the transient process after quenching is presented. Although the thermal agitation decreases suddenly, the local strain cannot be released at the same time. It can induce the hopping motion associated with structural arrangement which in term to release local strain energy and forming more ordered structure. The small size ordered domains gradually merge into larger ordered domain with longer spatial correlation and slower structural reorganization. The forming of larger ordered domain also increase the dynamic heterogeneity. However the dislocations between different ordered domains prevent the crystallization and make boundary of ordered domain unstable. The character of order parameter fluctuation due to instability of local domain boundary is presented and discussed.
    Table of Content 1 Introduction 1
    2 Background and theory 5
    2.1 Macroscopic view of the supercooled liquid and glass. . . . . . 5
    2.2 Liquid at the discrete level . . . . . . . . . . . . . . . . . . . . 6
    2.2.1 The micro motion at the discrete level . . . . . . . . . 7
    2.2.2 The mean square displacement . . . . . . . . . . . . . 7
    2.2.3 Non-Gaussian parameter . . . . . . . . . . . . . . . . . 11
    2.2.4 Self-intermediate scattering function . . . . . . . . . . 12
    2.3 Dusty plasma system . . . . . . . . . . . . . . . . . . . . . . . 12
    2.3.1 Radio frequency glow discharges and dusty plasmas . . 12
    2.3.2 Previous studies on quasi-2D strongly coupled dusty
    plasma liquids . . . . . . . . . . . . . . . . . . . . . . . 13
    2.4 The micro structure, topological defects, bond orientational
    order and spatiotemporal correlation functions . . . . . . . . 15
    2.4.1 Topological defects . . . . . . . . . . . . . . . . . . . . 15
    2.4.2 Bond-orientational order and its spatiotemporal correlations
    . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
    3 Experiment and data analysis 20
    3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 20
    3.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
    3.2.1 Joint probabilities and correlation probabilities of successive
    events . . . . . . . . . . . . . . . . . . . . . . . 23
    4 Result and Discussion 24
    4.1 Global evolution in quenched quasi-2D dusty plasma liquid . . 25
    4.1.1 Trajectory, bond orientational order and local vorticity 25
    4.1.2 Evolution of the bond orientational order and the kinetic
    energy . . . . . . . . . . . . . . . . . . . . . . . . 26
    4.2 Evolution of micro-motion in liquid quenching . . . . . . . . . 30
    4.2.1 Mean square displacement . . . . . . . . . . . . . . . . 30
    4.2.2 Probabilities distribution of displacement . . . . . . . . 32
    4.2.3 Collective motion . . . . . . . . . . . . . . . . . . . . . 32
    4.2.4 Structural relaxation time . . . . . . . . . . . . . . . . 35
    4.3 The relation between structure and motion . . . . . . . . . . . 38
    4.3.1 Correlation probability between structure and dynamics 39
    4.3.2 Spatiotemporal correlation of bond orientational order 39
    5 Conclusion 45
    Reference [1] T. E. Faber, Fuild Dynamics for Physicists, (Cambridge University Press
    1995).
    [2] E.Wigner, Trans. Faraday Soc. 34, 678 (1939).
    [3] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (ACADEMIC
    PRESS LIMITED 1986).
    [4] Eric R. Weeks, et al, Science. 287, 627 (2000).
    [5] K. Watanabe and H. Tanaka, Phys. Rev. Lett. 100, 158002 (2008).
    [6] Y.J. Lai and Lin I, Phys. Rev. Lett. 89, 155002 (2002).
    [7] P. Chaudhuri, L. Berthier, and W. Kob, Phys. Rev. Lett. 99, 060604
    (2007).
    [8] Y. Gao and M. L. Kilfoil, Phys. Rev. Lett. 99, 078301 (2007).
    [9] M. D. Ediger, C. A. Angell and Sidney R. Nagel, J. Phys. Chem. 100,
    13200 (1996).
    [10] P. G. Debenedetti and F. H. Stillinger, Nature. 410, 259 (2001).
    [11] R. Casalini and C.M. Roland, Phys. Rev. Lett. 102, 035701 (2009).
    [12] N. Greinert, T. Wood, and P. Bartlett, Phys. Rev. Lett. 97, 265702
    (2006).
    [13] L. Ramos and L. Cipelletti, Phys. Rev. Lett. 87, 245503 (2001).
    [14] J. H. Chu and Lin I, Phys. Rev. Lett. 72, 4009 (1994).
    [15] H. Thomas et al:, Phys. Rev. Lett. 73, 652 (1994).
    [16] L. W. Teng, P. S. Tu, Phys. Rev. Lett. 90, 245004 (2003).
    [17] Lin I, W. T. Juan, and C. H. Clnang, Science 272, 1626 (1996).
    [18] C. L. Chan, W.Y. Woon and L. I, Phys. Rev. Lett. 93 220602 (2004).
    [19] W. Y. Woon and L. I, Phys. Rev. Lett. 92, 065003 (2004).
    [20] Y. S. Hsuan, and Lin I, Phys. Rev. E. 76, 016403 (2007).
    [21] C. L. Chan , Ph. D. thesis, National Central University, Republic of
    China, (2008).
    [22] C. L. Klix, C. P. Royall, and Hajime Tanaka (2010).
    [23] Y. J. Lai, Ph. D. thesis, National Central University, Republic of China,
    (2002).
    [24] J. Mattsson, et al, Nature, 08457 (2009).
    [25] E. D. Gado and W. Kob, Phys. Rev. Lett. 98, 028303 (2007).
    [26] T. Kawasaki, T. Araki, and H. Tanaka, Phys. Rev. Lett. 99, 215701
    (2007).
    [27] Brain Chapman, Glow Discharge Processes (Wiley Inter-science Press
    1995).
    [28] J. M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).
    [29] B. I. Harperin and D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978).
    [30] D. R. Nelson, Phys. Rev. B 26, 269 (1982).
    [31] A. P. Young, Phys. Rev. B 19, 1855 (1979).
    [32] K. J. Strandburg, Bond-Orientational Order in Condensed Matter Systems (Springer, New York, 1992).
    Advisor
  • Lin I(L)
  • Files
  • 972202022.pdf
  • approve in 3 years
    Date of Submission 2010-07-28

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.