Title page for 966205011


[Back to Results | New Search]

Student Number 966205011
Author Yun-Yuan Wang(王韻圓)
Author's Email Address No Public.
Statistics This thesis had been viewed 1097 times. Download 376 times.
Department Graduate Institute of Hydrological and Oceanic Sciences
Year 2009
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title A Study on wave climate variation in Tropical North Western Pacific
Date of Defense 2010-06-18
Page Count 153
Keyword
  • annual oscillation
  • extreme wave events
  • wave climate variation
  • Abstract We investigated the variation of wave climate around Taiwan Waters and over the Tropical Northwestern Pacific. The global sea surface wind fields from NCEP reanalysis data were used to drive SWAN wave model to re-construct the historical records of wave from 1948 to 2008. The reconstruct wave data was compared and verified with observation from the Central Weather Bureau (CWB) , Water Resources Agency (WRA) and the NDBC/NOAA.
    The discussion of the trend of long-term wave climate change was categorized into two parts. In order to clarify the oscillations and trend of wave climate in different time scale, the first part was focused on the oscillations of wave heights, wave energy, wave steepness, and wave direction in the Taiwan Waters. The second part is the analysis of extreme wave events and its statistical characteristics.
    The results of the first part showed that the oscillations consisted of three different time-scale oscillations in Taiwan wave climate variations. There were seasonal oscillation, interannual oscillation affected by ENSO, and interdecadal oscillation. In the seasonal oscillation, the wave energy in winter was about 3~3.6 times than in summer. The ratio in east coast was higher than in west coast. The influence of ENSO was significant in interannual oscillation of wave energy. Wave height and wave energy became large in La Niña years. The time of the occurrences winter extreme wave events in La Niña years was several weeks late, which was in January. Wave height and wave energy weakened in El Niño years. The occurrence of winter extreme wave events in El Niño years was in November. In addition, there was no phase lag between wave climate oscillation in the seaaround Taiwan and Southern Oscillation Index (SOI). But there existed one year phase lag in the Northwest Pacific. The interdecadal oscillation of wave climate correlated medially with Pacific Decadal Oscillation (PDO). A decrease trend of wave height was in the sea area nearby Taiwan, which reduced 0.3 cm per year. In winter, the decrease trend of wave height and wave energy was due to decreasing the intensity of Siberia Heighs and associated winter monsoon. It is noted that increase trend is obvious in summer which might indicate the increasing strength of typhoon in this region.
    The occurrence probability analysis of extreme wave events in the sea area nearby Taiwan was discussed in the second part. In recent 60 years, most extreme wave events happened in two periods: 1967-1974 and 2000-2008. The larger wave height and longer duration of extreme wave events occurred in the latter than in the former. The extreme wave events in summer (winter) had the increase (decrease) trend in the sea area nearby Taiwan. All the extreme wave events in summer were caused by typhoon. After 1985, the number of extreme wave event caused by typhoon was more than caused by winter monsoon. The difference increased year by year. But the total number of extreme wave event in one year did not have any significant change.
    In addition, the statistical distribution of wave extreme value had large difference between El Niño years and La Niña years. The wave height extreme value in La Niña years was about double in El Niño years. The wave energy extreme value was about five times. This result can be provided for the design of coastal engineering.
    Table of Content 摘要 I
    ABSTRACT III
    致謝 V
    目錄 VII
    圖目錄 IIX
    表目錄 XVIII
    第一章 緒論 1
    1.1 研究動機 1
    1.2 研究目的 1
    1.3 世界各海域波候變遷前人研究彙整 2
    1.3.1 大西洋波候變遷 2
    1.3.2太平洋波候變遷 6
    1.4 本文組織 14
    第二章 研究方法 15
    2.1 波浪數值模式理論 15
    2.1.1 波浪成長演變機制 15
    2.1.2 SWAN波浪模式理論 19
    2.1.3 SWAN波浪模式數值方法 23
    2.2 經驗模態分解法(EMPIRICAL MODE DECOMPOSITION, EMD) 24
    2.2.1 本質模態函數(Intrinsic Mode Function, IMF) 25
    2.2.2 經驗模態分解法 26
    2.2.3 EMD處理 30
    第三章 歷史資料重建及驗證 32
    3.1 歷史資料重建 32
    3.1.1 風場來源 32
    3.1.2 模式計算域設定 36
    3.2 波浪模式驗證資料來源 38
    3.3 模式計算結果與實測資料之比較 40
    3.3.1 龍洞測站波浪驗證 40
    3.3.2 花蓮測站波浪驗證 42
    3.3.3 西北太平洋海域測站波浪驗證 44
    3.3.4 模式誤差與觀測成功率之關係 46
    3.4 波能與波浪尖銳度計算 48
    第四章 台灣周邊海域波候於時空上的變異 50
    4.1 波候季節性變異 54
    4.2 波候年際變異 63
    4.2.1 台灣周遭海域波候年際變異 63
    4.2.2 聖嬰、反聖嬰現象 63
    4.2.3 年際波候震盪與SOI指數關係 67
    4.2.4 冬夏季波候與ENSO之關係 77
    4.3 十年際週期之波候變遷 84
    4.3.1 西北太平洋波候之變遷 84
    4.4 1948~2008年波候趨勢變遷 87
    第五章 台灣周邊海域大波極端事件統計分析 92
    5.1 極端值事件分析 92
    5.1.1 極端值事件次數分析 92
    5.1.2 東北季風 107
    5.1.2.1 東北季風成因及特性 107
    5.1.2.2 東北季風的變遷 108
    5.1.3 西北太平洋極端事件分析 109
    5.1.4 颱風的氣候變化趨勢 117
    5.2 在聖嬰年與反聖嬰年之極端值統計分佈 119
    第六章 結論與建議 127
    6.1 結論 127
    6.1.1 台灣周邊及西北太平洋波候變遷趨勢 127
    6.1.2 台灣周邊海域大波極端事件統計分析結果 128
    參考文獻 130
    Reference [1] 李怡婷,(2005),「風浪模式計算最佳化之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    [2] 高國棟、陸渝蓉,(1994),「氣候學」,明文書局。
    [3] 徐泊樺、顏志偉,(2007),「淺談我國海洋能源之開發前景」,物理雙月刊,29(3),720-735。
    [4] 許泰文,(2003),「近岸水動力學」,台北;科技圖書。
    [5] 陳冠融,(2007),「以經驗模態分解法消除二維影像之雷射光斑之可行性分析」,國立中山大學光電工程研究所碩士論文。
    [6] 陳家銘,(2007),「應用波浪數值模式推算台灣海域波浪特性」,國立中山大學海洋環境及工程研究所碩士論文。
    [7] 黃玉華,(2005),「聖嬰現象對台灣附近海域海氣象影響之研究」,國立中山大學海洋資源研究所碩士論文。
    [8] 楊承道,(2008),「氣候變遷對西北太平洋熱帶氣旋的影響」,國立中央大學大氣物理研究所碩士論文。
    [9] 葉均喬,(2005),「風場時空變化對全球大氣-海洋二氧化碳通量計算影響之研究」,國立中央大學水文與海洋科學研究所碩士論文。
    [10] 廖建明,(2001),「近岸風浪推算之研究」,國立成功大學水利及海洋工程研究所博士論文。
    [11] 鄭皓元,(2005),「SWAN波浪模式推算週期之探討」,國立成功大學水利及海洋工程研究所碩士論文。
    [12] 鄭凱傑,(2002),「東亞冬季季風與ENSO事件關係之研究」,國立中央大學大氣物理研究所碩士論文。
    [13] Allan, J. C., and P. D. Komar (2000): Are ocean wave heights increasing in the eastern North Pacific? Eos Trans. AGU, 47, 561-567.
    [14] Allan, J. C., and P. D. Komar (2001): Wave climate change and coastal erosion in the US Pacific Northwest. Proceedings: WAVES2001 conference held September 2-6, 2001 in San Francisco. American Society of Civil Engineer.
    [15] Alves, J. H. G. M., and M. L. Banner (2003): Performance of a saturated-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. J. Phys. Oceanogr., 33, 1274–1298.
    [16] Bacon, S. and D. J. T. Carter (1991): Wave climate changes in the North Atlantic and North Sea. Int. J. Climatol., 11, 545-558.
    [17] Booij, N., L. H. Holthuijsen, and R. C. Ris (1996): The SWAN wave model for shallow water. Proc. 25th Int. Conf. Coastal Engng., Orlando, USA, 1, 668-676.
    [18] Booij, N., R. C. Ris, and L. H. Holthuijsen (1999): A third-generation wave model for coastal regions 1. Model description and validation, J. Geophys. Res., 104, 7649-7666.
    [19] Bjerknes, J. (1969): Atmospheric teleconnections from the equatorialPacific. Mon. Wea. Rev., 97, 163–172.
    [20] Chen, W., H.-F. Graf,, and R.-H. Huang(2000): The interannual variability of East Asian winter monsoon and its relation to the summer monsoon, Adv.Atmos. Sci., 17(1), 48– 60.
    [21] Emanuel, K.A. (2001): The contribution of tropical cyclones to the oceans’meridional heat transport. J. Geophys. Res., 106, 14771-14781.
    [22] Emanuel, K. A. (2005): Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688.
    [23] Glantz, M. H. (2001): Current of Change: impacts of El Niño and La Niña on climate and society. 2nd ed. Cambridge University Press, Cambridge, UK, 252 pp.
    [24] Goda, Y. (2000): Random seas and design of maritime structures. 2nd ed., World Scientific, Singapore, pp. 443.
    [25] Gong D. Y. and C. H. Ho (2002):The Siberian high and climate change over middle to high latitude Asia. Theor.Appli. Climatol 72, 1-9.
    [26] Graham, N.E. and H.F. Diaz (2001): Evidence for intensification of north Pacific winter cyclones since 1948, Bull Am Met-Soc, 82, 1869-1893.
    [27] Gulev, S.K. and V. Grigorieva ( 2006): Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the Voluntary Observing Ship data. Int. J. Climatol., 19, 5667-5685.
    [28] Harrison, G. P., and A. R. Wallace (2005): Sensitivity of wave energy to climate change. IEEE Trans Energy Convers, 20, 870-877.
    [29] Hasselmann K. (1963):On the nonlinear energy transfer in a gravity –wave spectrum. Part 3: Computation of the energy flux and swell-sea interaction for a Neumann spectrum, J. Fluid Mech., 6, 107-127.
    [30] Hasselmann K. (1974): On the spectral dissipation of ocean waves due to whitecapping. Bound. Layer Meteor., 15, 385-398.
    [31] Hasselmann K. and Coauthors (1973): Measurements of wind-wave growthand swell decay during the Joint North Sea Wave Project. Dtsh. Hydrogr. Z., 8(Suppl. A), 1–95.
    [32] Helmholtz, H. V. (1888): Uber atomspharische bewegungen. S. Bar. Preuss. Akad. Wiss., Berlin, Mathem-Physik, kl.
    [33] Huang, N. E., and Coauthors (1998): The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. Roy. Soc. London, 454A, 903–995.
    [34] Huang, N. E., and Z. Wu (2008): A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228.
    [35] Jeffreys, H. (1924): On the formation of waves by wind. Proc. Roy. Soc., A107, 189-206.
    [36] Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen (1994): Dynamics and modeling of ocean waves. Cambridge University Press, 554 pp.
    [37] Kossin, J.P, K. R. Knapp, D. J. Vimont, and R. J. Murnane (2007): A globally consistent reanalysis of hurricane trends. Geophys. Res. Lett. 34, L04815, doi:10.1029/2006GL028836.
    [38] Kushnir, Y., V. J. Cardone, J. G. Greenwood, and M. A. Cane (1997): The recent increase in North Atlantic wave heights. J. Climate, 10, 2107-2113.
    [39] McPhaden, M. J. (1999): Genesis and evolution of the 1997-1998 El Niño. Science, 283, 950-954.
    [40] McPhaden, M. J., and J. Picaut (1990): El Niño-Southern oscillationdisplacements of the western equatorial Pacific warm pool. Science, 250, 1385-1388.
    [41] Miles, J. W. (1957): On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185-204.
    [42] U.S. Department of the Interior (2006): Technology white paper on wave energy potential on the U.S. outer continental shelf. Minerals Management Service, Renewable Energy and Alternate Use Program, U.S. Department of the Interior (2006).
    [43] Phillips, O. M. (1957): On the generation of waves by turbulent wind. J. Fluid Mech., 2, 417-445.
    [44] Rasmusson, E. M., and T. H. Carpenter (1982): Variations in tropical sea surface temperature and surface wind fields associated withthe Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384.
    [45] Sasaki, W., S. I. Iwasaki, T. Matsuura, S. Iizuka, and I. Watabe (2005): Changes in wave climate off Hiratsuka, Japan, as affected by storm activity over the western North Pacific. J. Geophys. Res., 110.
    [46] Sasaki, W., and T. Hibiya (2007): Interannual variability and predictability of summertime significant wave heights in the western North Pacific. J. Oceanogr., 63, 203-213.
    [47] Snyder, R., F. W. Dobson, J. A. Elliott, and R. B. Long (1981): Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, 1-59.
    [48] Sterl, A., G. J. Komen, and P. D. Cotton (1998): Fifteen years of global wavehindcasts using winds from the European Centre for Medium-Range Weather Forecast reanalysis: Validating the reanalyzed winds and assessing the wave climate. J. Geophys. Res., 103, 5477–5492.
    [49] Wang, B., R.G. Wu, and X.H. Fu (2000): Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J. Climate, 13, 1517-1536.
    [50] Wang, X. L., and V. R. Swail (2001): Changes of extreme wave height in Northern Hemisphere Ocean and related atmospheric circulation regimes. J. Climate., 14, 2204-2221.
    [51] Wang, X. L., and V. R. Swail (2002): Trends of Atlantic wave extremes as simulated in a 40-yr wave hindcast using kinematically reanalyzed wind fields. J. Climate., 15, 1020-1035.
    [52] WASA Group (1998): The WASA project: Changing storm and wave climate in the North Atlantic and adjacent seas? Fourth Int. Workshop on Wave Hindcasting and Forecasting, Banff, AB, Canada, Panel on Energy Research and Development, 31-34.
    [53] Webster, P. J., G. J. Holland, J. A. Curry and H.-R. Chang (2005): Changes in tropical cyclone number, duration and intensity in a warming environment. Science, 309, 1844-1846.
    [54] Weisse, R., and H.Günther (2007): Wave climate and long-term changes for the Southern North Sea obtained from a high-resolution hindcast 1958-2002. Ocean Dyn., 57, 161-172.
    [55] Woolf, D. K., P. G. Challenor, and P. D. Cotton (2002): Variability and predictability of the North Atlantic wave climate, J. Geophys. Res., 107,doi:10.1029/2001JC001124.
    [56] Wu, Z., and N. E. Huang (2005), Ensemble empirical mode decomposition: A noise-assisted data analysis method, COLA Tech. Rep. 193, Cent. for Ocean-Land-Atmos. Stud., Calverton, Md.
    [57] Wu, L., B. Wang, and S. Geng (2005): Growing typhoon influence on east Asia, Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.
    [58] Wyrtki, K. (1975): El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572-584.
    [59] Yamaguchi, M. and Y. Hatada (2003): Estimation of wave climate and its long-term variability around the coasts of Korea, Proc. 13th ISOPE conference, Hawaii.
    [60] Young, I.R. (1999): Wind Generated Ocean Waves. Oxford-Elsevier, Amsterdam.
    [61] Zhang, Y., K.R. Sperber, and J.S. Boyle(1997): Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979-95 NCEP/NCAR reanalysis, Mon. Weather Rev.,125, 2605-2619.
    Advisor
  • Hwa Chien(錢樺)
  • Files
  • 966205011.pdf
  • approve immediately
    Date of Submission 2010-06-29

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.