Title page for 966204001


[Back to Results | New Search]

Student Number 966204001
Author Wen-Jie Wu(吳文傑)
Author's Email Address wuwenjay1012@msn.com
Statistics This thesis had been viewed 1142 times. Download 701 times.
Department Graduate Institute of Applied Geology
Year 2008
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Stress-history dependent porosity model of sedimentary rock
Date of Defense 2009-06-08
Page Count 78
Keyword
  • bulk modulus
  • porosity
  • preconsolidation stress
  • stress history
  • TCDP
  • Abstract The proposed porosity-depth relationship has been widely studied since the well known Athy’s law was proposed in 1930. Regarding to the effect of mechanical compaction, porosity-effective stress relationships have forms of exponential law or power law. Besides the effective stress, stress history also plays an important role on the mechanical behavior of geological materials. This study proposed a stress-history dependent porosity model of sedimentary rock based on laboratory work. The samples are assembled from TCDP boreholes. The porosities varied with effective confining pressure are derived, and showing the estimated porosity-depth relation fit in TCDP borehole log data. Final, the bulk modulus from seismic velocity of well logging also well reproduced based on the suggested model. It indicates that the stress-history dependent porosity model can simulate the relationships between porosity/velocity and depth in formations.
    Table of Content 摘要 ................................................................................................................ i
    ABSTRACT .................................................................................................. ii
    誌謝 .............................................................................................................. iii
    目錄 .............................................................................................................. iv
    圖目錄 .......................................................................................................... vi
    表目錄 .......................................................................................................... ix
    符號說明 ....................................................................................................... x
    第一章 緒論 ................................................................................................. 1
    1.1 研究動機與目的 ....................................................................... 1
    1.2 研究方法 ................................................................................... 1
    1.3 論文架構 ................................................................................... 2
    第二章 文獻回顧 ......................................................................................... 4
    2.1 沉積岩孔隙率–深度關係 ......................................................... 4
    2.2 地質材料之最大預壓密應力 ................................................... 7
    2.3 孔隙率應力相依模型 ............................................................. 11
    2.4 波速(P-wave velocity)與深度之關係 ..................................... 14
    2.5 岩石壓縮性與統體模數(bulk modulus) ................................. 15
    2.6 台灣車籠埔深鑽計畫(TCDP)概述 ........................................ 19
    第三章 研究方法 ....................................................................................... 22
    3.1 孔隙率量測 ............................................................................. 22
    3.2 實驗詴體 ................................................................................. 26
    3.3 應力歷史相依孔隙率模型及最大預壓密應力 ..................... 30
    v
    3.4 由地質剖面評估沉積岩之最大預壓密應力 ......................... 34
    3.5 孔隙率隨深度之變化 ............................................................. 37
    3.6 岩石統體模數隨深度之變化 ................................................. 38
    第四章 結果與討論 ................................................................................... 40
    4.1 決定最大預壓密應力之方法 ................................................. 40
    4.1.1 根據孔隙率實驗所得之最大預壓密應力 ...................... 40
    4.1.2 根據地質剖面獲得之最大預壓密應力 .......................... 46
    4.2 孔隙率與深度之關係 ............................................................. 49
    4.3 應力歷史相關統體模數 ......................................................... 54
    第五章 結論與建議 ................................................................................... 56
    文獻回顧 ..................................................................................................... 57
    附錄 ............................................................................................................. 67
    A. Grapher自訂迴歸方程式 ....................................................... 67
    B. 孔隙率實驗之詴體 ................................................................. 68
    C. 各詴體孔隙率隨有效圍壓變化 ............................................. 69
    D. 孔隙率實驗之標準作業程序 ................................................. 76
    Reference [1] Pine, R. J. and A. S. Batchelor, “Downward migration of shearing in joined rock during hydraulical injections”, International Journal of Rock Mechanics & Mining Science, Vol. 21, pp. 249-263, 1984.
    [2] Tsang, C. F., “Introduction to coupled processes”, Coupled processes associated with nuclear waste repositories, C. F. Tsang (eds.), Academic Press, Orlando, 1987.
    [3] Apps, J. and C. F. Tsang, “Preface”, Deep injection of disposal of hazardous industrial waste: scientific and engineering aspects, J. Apps and C. F. Tsang (eds.), Academic Press, San Diego, 1996.
    [4] Brasier, F. M. and B. J. Kobelsky, “Injection of industrial wastes in the United States”, Deep injection of disposal of hazardous industrial waste: scientific and engineering aspects, J. Apps and C. F. Tsang (eds.), Academic Press, San Diego, 1996.
    [5] Lewis, R. W. and B. A. Schrefler, The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd ed., Wiley, New York, 1998.
    [6] Baria, R., J. Baumgartner, F. Rummel, R. J. Pine and Y. Sato, “HDR/HWR reservoirs: concepts, understanding and creation”, Geothermics, Vol. 28, pp. 533-552, 1999.
    [7] Rutqvist, J., Y. S. Wu, C. F. Tsang and G. Bodvarsson “A modeling approach for analysis of coupled multiphase fluid flow, heat transfer and deformation in fracture porous rock”, International Journal of Rock Mechanics & Mining Science, Vol. 39, pp. 429-442, 2002.
    [8] Rutqvist, J. and O. Stephansson, “The role of hydromechanical coupling in fractured rock engineering”, Hydrogeology Journal, Vol. 11, pp. 7-40, 2003.
    [9] Rutqvist, J. and C. F. Tsang, “Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain”, Journal of Contaminant Hydrology, Vol. 62-63, pp. 637-652, 2003.
    [10] Liu, H. H., J. Rutqvist and J. G. Berryman, “On the relationship between stress and elastic strain for porous and fractured rock”, International Journal of Rock Mechanics & Mining Sciences, Vol. 46, pp. 289-296, 2009.
    [11] Mondol, N. H., K. Bjørlykke, J. Jahren and K. Høeg, “Experimental mechanical compaction of clay mineral aggregates – Change in physical properties of mudstones during burial”, Marine and Petroleum Geology, Vol. 24, pp. 289-311, 2007.
    [12] Terzaghi, K., “Principles of soil mechanics: I – phenomena of cohesion of clays. IV – settlement and consolidation of clay”, Engineering News – Record, Vol. 95, No. 19, pp. 742-746, pp. 874-878, 1925.
    [13] Athy, L. F., “Density, porosity and compaction of sedimentary rocks”, American Association of Petroleum Geologists Bulletin, Vol. 14, No. 1, pp. 1-24, 1930.
    [14] Goulty, N. R., “Relationships between porosity and effective stress in shales”, First Break, Vol. 16, No. 12, pp. 413-419, 1998.
    [15] Yang, Y. and A. C. Aplin “Definition and practical application of mudstone porosity – effective stress relationships”, Petroleum Geoscience, Vol. 10, No. 2, pp. 153-162, 2004.
    [16] Jones, M. E. and M. A. Addis, “On changes in porosity and volume during burial of argillaceous sediments”, Marine and Petroleum Geology, Vol. 2, pp. 247-253, 1985.
    [17] Bjørkum, P. A., E. H. Oelkers, P. H. Nadeau, O. Walderhaug and W. M. Murphy, “Porosity prediction in quartzose sandstones as a function of time, temperature, depth, stylolite frequency and hydrocarbon saturation”, American Association of Petroleum Geologists Bulletin, Vol. 82, No. 4, pp. 637-648, 1998.
    [18] Bjørlykke, K., “Principal aspects of compaction and fluid flow in mudstones”, Muds and mudstone: physical and fluid – flow properties, Special Publication No. 158, A. C. Aplin et al. (eds.), Geological Society of London, London, 1999.
    [19] Lander, R. H. and O. Walderhaug, “Predicting porosity through simulating sandstone compaction and quartz cemention”, American Association of Petroleum Geologists Bulletin, Vol. 83, No. 3, pp. 433-449, 1999.
    [20] Storvoll, V., K. Bjørlykke and H. N. Mondol, “Velocity – depth trends in Mesozoic and Cenozoic sediments from the Norwegian shelf”, American Association of Petroleum Geologists Bulletin, Vol. 89, No. 3, pp. 359-381, 2005.
    [21] Audet, D. M., “Compaction and overpressuring in Pleistocene sediments on the Louisiana Shelf, Gulf of Mexico”, Marine and Petroleum Geology, Vol. 13, No. 5, pp. 467-474, 1996.
    [22] Saito, S. and D. Goldberg, “Evolution of tectonic compaction in the Barbados accretionary prism: estimate from logging-while-drilling”, Earth and Planetary Science Letters, Vol. 148, pp. 423-432, 1997.
    [23] Van Sickel, W. A., M. A. Kominz, K. G. Miller and J. V. Browning, “Late Cretaceous and Cenozoic sea-level estimates: backstripping analysis of borehole data, onshore New Jersey”, Basin Research, Vol. 16, pp. 451-465, 2004
    [24] Lin, A. T., A. B. Watts and S. P. Hesselbo, “Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region”, Basin Research, Vol. 15, pp. 453-478, 2003.
    [25] Holtz, R. D. and W. D. Kovacs, An introduction to geotechnical engineering, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.
    [26] Jamiolkowski, M., C. C. Ladd, J. T. Germaine and R. Lancellotta, “New development in field and laboratory testing of soils”, Theme Lecture, 11th international conference on Soil Mechanics and Foundation Engineering, pp. 57-153, San Francisco, 1985.
    [27] Larson, W. E. and S. C. Gupta, “Estimating critical stress in unsaturated soils from changes in pore water pressure during confined compression”, Soil Science Society of America Journal, Vol. 44, pp. 1127-1132, 1980.
    [28] Larson, W. E., S. C. Gupta and R. A. Useche, “Compression of agricultural soils”, Soil Science Society of America Journal, Vol. 44, pp. 450-457, 1980.
    [29] Culley, J. L. B. and W. E. Larson, “Susceptibility to compression of a clay loam Haplaquoll”, Soil Science Society of America Journal, Vol. 51, pp. 562-567, 1987.
    [30] Gupta, S. C. and R. R. Allmaras, “Models to access the susceptibility of soil to excessive compaction”, Advances in Soil Sciences, Vol. 6, pp. 65-100, 1987.
    [31] Lebert, M. and R. Horn, “A method to predict the mechanical strength of agricultural soils”, Soil and Tillage Research, Vol. 19, pp. 275-286, 1991.
    [32] Stone, J. A. and W. E. Larson, “Rebound of five one – dimensionally compressed unsaturated granular soils”, Soil Science Society of America Journal, Vol. 44, pp. 819-822, 1980.
    [33] Gupta, S. C., A. Hadas and R. L. Schafer, “Modeling soil mechanical behavior during compaction”, Mechanical and related process in structured agricultural soils, W. E. Larson et al. (eds.), Kluwer Academic Publishers, Dordrecht, 1989 .
    [34] Gregory, A. S., W. R. Whalley, C. W. Watts, N. R. A. Bird, P. D. Hallett and A. P. Whitmore, “Calculation of the compression index and precompression stress form soil compression test data”, Soil and Tillage Research, Vol. 89, pp. 45-57, 2006.
    [35] Skempton, A. W., “The consolidation of clays by gravitational compaction”, Quarterly Journal of the Geological Society, Vol. 125, pp. 373-411, 1970.
    [36] Jones, M. E. and M. A. Addis, “The application of stress path and critical state analysis to sediment deformation”, Journal of Structural Geology, Vol. 8, pp. 575-580, 1986.
    [37] Maltman, A., The geological deformation of sediments, Chapman and Hall, London, 1994.
    [38] Schneider, F., M. Bouteca and G. Vasseur, “Validity of the porosity/effective stress concept in sedimentary basin modeling”, First Break, Vol. 12, pp. 321-326, 1994.
    [39] Aplin, A. C., Y. Yang and S. Hansen, “Assessment of beta, the compression coefficient of mudstones and its relationship to detailed lithology”, Marine and Petroleum Geology, Vol. 12, pp. 955-963, 1995.
    [40] Dewhurst, D. N., A. C. Aplin, J. P. Sarda and Y. Yang, “Compaction-driven evolution of porosity and permeability in natural mudstones: an experimental study”, Journal of Geophysical Research, Vol. 103, No. B1, pp. 651-661, 1998.
    [41] Dias Jr., M. S. and F. J. Pierce, “A simple procedure for estimating preconsolidation pressure from soil compression curves”, Soil Technology, Vol. 8, pp. 139-151, 1995.
    [42] Casagrande, A., “The determination of the pre-consolidation load and its practical significance”, Proceeding of 1st International Conference of soil Mechanics, Vol. 3, pp. 60-64, 1936.
    [43] Burmister, D. M., “The application of controlled test methods in consolidation testing”, Symposium on Consolidation Testing of Soils, Special Technical Publication No. 126, pp. 83-98, 54th Annual Meeting of the ASTM, New Jersey, 1951.
    [44] Schmertmann, J. H., “The undisturbed consolidation behavior of clay”, Transactions of the American Society of Civil Engineers, Vol. 120, pp. 1201-1233, 1955.
    [45] Sällfors, G., “Preconsolidation pressure of soft high plastic clays”, Department of Geotechnical Engineering, Chalmers University of Technology, Ph. D., 1975.
    [46] Jose, B. T., A. Sridharan and B. M. Abraham, “Log – log method for determination of preconsolidation pressure”, Geotechnical Testing Journal, Vol. 12, pp. 230-237, 1989.
    [47] Lambe, T. W. and R. V. Whitman, Soil mechanics, John Wiley & Sons, New York, 1969.
    [48] Shi, Y. and C. Y. Wang, “Pore pressure generation in sedimentary basins: overloading versus aquathermal”, Journal of Geophysical Research, Vol. 91, No. B2, pp. 2153-2162, 1986.
    [49] Yang, Y. and A. C. Aplin, “Permeability and petrophysical properties of 30 natural mudstones”, Journal of Geophysical Research, Vol. 112, B03206, 2007.
    [50] Sclater, J. G. and P. A. F. Christie, “Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the central North Sea Basin”, Journal of Geophysical Research, Vol. 85, No. B7, pp. 3711-3739, 1980.
    [51] Baldwin, B. and C. O. Butler, “Compaction curves”, American Association of Petroleum Geologists Bulletin, Vol. 69, No. 4, pp. 622-626, 1985.
    [52] Dickinson, G., “Geological aspects of abnormal reservoir pressure in Gulf Coast Louisiana”, American Association of Petroleum Geologists Bulletin, Vol. 37, pp. 410-432, 1953.
    [53] Hoholick, J. D., T. Metarko and P. E. Potter, “Regional variations of porosity and cement: St. Peter and Mount Simon Sandstones in Illinois Basin”, American Association of Petroleum Geologists Bulletin, Vol. 68, pp. 753-764, 1984.
    [54] Schmoker, J. W. and R. B. Halley, “Carbonate porosity versus depth: a prediction relation for South Florida”, American Association of Petroleum Geologists Bulletin, Vol. 66, pp. 2561-2570, 1982.
    [55] Hsu, J. Y., “Stress-dependent fluid flow properties of sedimentary rocks and overpressure generation”, Institute of Applied Geology, National Central University, thesis, 2007.
    [56] Japsen, P., T. Mukerji and G. Mavko, “Constrains on velocity – depth trends from rock physics models”, Geophysical Prospecting, Vol. 55, pp. 135-154, 2007.
    [57] Vernik, L., “Predicting lithology and transport properties from acoustic velocities based on petrophysical classification of siliciclastics”, Geophysics, Vol. 59, No. 3, pp. 420-427, 1994.
    [58] Audet, D. M., “Modelling of porosity evolution and mechanical compaction of calcareous defiments”, Sedimentology, Vol. 42, pp. 355-373, 1995.
    [59] Goff, J. A. and K. Holliger, “Nature and origin of upper crustal seismic velocity fluctuations and associated scaling properties: combined stochastic analyses of KTB velocity and lithology logs”, Journal of Geophysical Research, Vol. 104, No. B6, pp. 13169-13182, 1999.
    [60] Japsen, P., “Regional velocity – depth anomalies, North Sea chalk: a record of overpressure and Neogene uplift and erosion”, American Association of Petroleum Geologists Bulletin, Vol. 82, No. 11, pp. 2031-2074, 1998.
    [61] Japsen, P., “Overpressured Cenozoic shale mapped from velocity anomalies relative to a baseline for marine shale, North Sea”, Petroleum Geoscience, Vol. 5, pp. 321-336, 1999.
    [62] Urmos, J. and R. H. Wilkens, “In situ velocities in pelagic carbonates: new insights from Ocean drilling Program Leg 130, Ontong Java Plateau”, Journal of Geophysical Research, Vol. 98, No. B5, pp. 7903-7920, 1993.
    [63] Walsh, J. B., “The effect of cracks on the compressibility of rock”, Journal of Geophysical Research, Vol. 70, No. 2, pp.381-389, 1965.
    [64] Mavko, G. and T. Mukerji, “Seismic pore space compressibility and Gassmann’s relation”, Geophysics, Vol. 60, No. 6, pp. 1743-1749, 1995.
    [65] Han, D. H. and M. L. Batzle, “Gassmann’s equation and fluid-saturation effects on seismic velocities”, Geophysics, Vol. 69, No. 2, pp. 398-405, 2004.
    [66] Gassmann, F., “Über die elastizität poröser medien”, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, Vol. 96, pp. 1-23, 1951.
    [67] Berryman, J. G., “Origin of Gassmann’s equation”, Geophysics, Vol. 64, pp. 1627-1629, 1999.
    [68] Lin, A. T., S. M. Wang, J. H. Hung, M. S. Wu and C. S. Liu, “Lithostratigraphy of the Taiwan Chelungpu-fault Drilling Project-A borehole and its neighboring region, central Taiwan”, TAO, Vol. 18, No. 2, pp. 223-241, 2007.
    [69] Hung, J. H., Y. H. Wu, E. C. Yeh, J. C. Wu and TCDP Scientific Party, “Subsurface structure, physical properties, and fault zone characteristics in the scientific drill holes of Taiwan Chelungpu-fault Drilling Project”, TAO, Vol. 18, No. 2, pp. 271-293, 2007.
    [70] Hung, J. H., K. F. Ma, C. Y. Wang, H. Ito, W. Lin and E. C. Yeh, “Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu fault Drilling Project”, Tectonophisics, Vol. 466, pp. 307-321, 2009.
    [71] ISRM, “Rock characterization testing and monitoring”, ISRM Suggested Method, E. T. Brown (eds.), Pergamon Press, Oxford, United Kingdom, 1981.
    [72] Tanikawa, W. and T. Shimamoto, “Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks”, Hydrology and Earth System Sciences Discussions, Vol. 3, pp. 1315-1338, 2006.
    [73] Tanikawa, W., T. Shimamoto, W. K. Wey, W. Y. Wu, C. W. Lin and W. C. Lai, “Sedimentation and generation of abnormal fluid pressure in the focal area of 1999 Taiwan Chi-Chi earthquake”, Proceeding of the ISRM International Symposium , 3rd ARMS, pp. 553-557, Tokyo, Japan, 2004.
    [74] Ho, C. S., “A introduction to the geology of Taiwan explanatory text of the geologic map of Taiwan”, MOEACGS, Taiwan, 1986.
    [75] Wu, Y. H., E. C. Yeh, J. J. Dong, L. W. Kuo, J. Y. Hsu and J. H. Hung, “Core-log integration studies in hole–A of Taiwan Chelungpu–fault Drilling Project”, Geophysical Journal International, Vol. 174, pp. 949-965, 2008.
    [76] Hsieh, S. H. and C. C. Hu, “Gravity and magnetic studies of Taiwan”, Petroleum Geology of Taiwan, Vol. 10, pp. 283-321, 1972.
    [77] Blatt, H., R. J. Tracy and B. E. Owens, “Petrology – igneous, sedimentary, and metamorphic”, 3rd edition, W. H. Freeman and Company, New York, 2005.
    [78] Mavko, G., T. Mukerji and J. Dvorkin, “The rock physics handbook – tools for seismic analysis in porous media”, Cambridge University Press, Cambridge, 1998.
    Advisor
  • Jai-Jyun Dong(董家鈞)
  • Files
  • 966204001.pdf
  • approve immediately
    Date of Submission 2009-07-18

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.