Title page for 965201063


[Back to Results | New Search]

Student Number 965201063
Author Che-Hao Shen(沈哲豪)
Author's Email Address 965201063@cc.ncu.edu.tw
Statistics This thesis had been viewed 1324 times. Download 742 times.
Department Electrical Engineering
Year 2008
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Design of Broadband Low-loss RF CMOS Resistive-Ring Mixer
Date of Defense 2009-07-02
Page Count 152
Keyword
  • broadband
  • doubly balanced mixer
  • mixer.modulator
  • Abstract Several resistive ring-type broadband mixers have been designed and fabricated by using CMOS techniques for microwave and MMW applications in this thesis. Since the broadband operation and the output power requirement are a tradeoff between the conversion loss and output 1 dB compression point, and the total gate area of NMOS transistor further investigated with the conversion loss. A broadband mixer without on-chip balun has been fabricated using 0.35 ?m SiGe BiCMOS process to verify the resistive ring-type mixer.
    The doubly balanced mixer with a compact Marchand balun has been presented in CMOS 0.18 ?m technique with a chip size of 0.6 ×0.4 mm2. The mixer exhibits an operation frequency of from 18 to 52 GHz, a measured conversion loss of 11.5 dB, an IF Frequency bandwidth of from DC to 14 GHz, an input P1dB of 3 dBm, and an LO-RF isolation of 40 dB.
      In chapter 4, an IQ mixer achieved using the doubly balanced mixer, a power dividers, and a 90。 hybrid couplers is also presented with a chip size of 0.8 ×0.5 mm2 for high-speed orthogonal modulation applications. The IQ mixer demonstrated a measured conversion loss of 12.5 dB, an IF Frequency bandwidth of DC-14 GHz, an input P1dB of 3 dBm, a LO-RF, isolation of 35 dB, and a side-band suppression of -33 dBc.
      In chapter 5, an active Gilbert-cell mixer has been presented in BiFET process with the operating frequency of 0.8-20 GHz. BiFET process was compined with HBTs and PHEMTs. For the high performance mixer, HBT devices was designed for trans-conductance stage, PHEMT devices was designed for switch-stage. By the way, the design could been using in a modulator. The data rate is more than 2 Gbps.
    Table of Content 摘要 ............................................................................................................................................ i
    Abstract ..................................................................................................................................... ii
    圖目錄 ...................................................................................................................................... vi
    表目錄 ....................................................................................................................................... x
    第一章 緒論 ............................................................................................................................... 1
    1.1 研究動機及背景 .............................................................................................................. 1
    1.2 相關研究與發展 .............................................................................................................. 2
    1.3 論文架構 .......................................................................................................................... 2
    第二章 寬頻混頻器設計 .......................................................................................................... 4
    2.1 混頻器介紹 ...................................................................................................................... 4
    2.1.1 介紹 ........................................................................................................................... 4
    2.1.1 重要參數規格 ........................................................................................................... 6
    2.1.2 混頻器種類 ............................................................................................................ 10
    2.2 寬頻混頻器理論 ............................................................................................................ 12
    2.2.1 寬頻混頻器阻抗匹配法 ......................................................................................... 12
    2.2.2 環狀電阻性混頻器之模型分析[13] ...................................................................... 15
    2.2.3 閘極端偏壓法 ........................................................................................................ 21
    2.3 平衡器運用於混頻器: ................................................................................................... 22
    2.3.1 平衡器介紹以及重要參數規格 ............................................................................. 22
    2.3.2 Marchand Balun 介紹[2] ........................................................................................ 25
    2.4 0.35 μm SiGe BiCMOS 環狀電阻性混頻器設計 ........................................................ 32
    2.4.1 介紹 ......................................................................................................................... 32
    2.4.2 降頻端(Down Conversion) 模擬與量測結果討論 ............................................... 35
    2.4.3 升頻端(Up Conversion)模擬與量測結果討論 ...................................................... 40
    2.4.實驗結果討論 ............................................................................................................ 45
    2.5 結論 ............................................................................................................................... 48
    第三章 環狀電阻性混頻器設計 ............................................................................................ 49
    3.1 簡介 ............................................................................................................................... 49
    3.2 0.18 μm CMOS 高線性度環狀電阻性混頻器設計 .................................................... 51
    3.2.1 介紹 ........................................................................................................................ 51
    3.2.2 平衡器模擬結果 .................................................................................................... 53
    3.2.3 降頻端(Down Conversion)模擬與量測結果討論 ................................................. 55
    3.2.4 升頻端(Up Conversion) 模擬與量測結果討論 .................................................... 58
    3.2.5 訊號隔絕度量測結果: ............................................................................................ 60
    3.2.6 實驗結果與討論 .................................................................................................... 62
    3.3 0.18 μm CMOS 低損耗環狀電阻性混頻器設計 ........................................................ 63
    3.3.1 簡介 ........................................................................................................................ 63
    3.3.2 平衡器模擬結果 .................................................................................................... 64
    3.3.3 降頻端模擬與量測結果討論(Down Conversion) ................................................ 66
    3.3.4 升頻端模擬與量測結果討論 (Up Conversion) .................................................... 71
    3.3.5 訊號隔絕度量測結果 ............................................................................................. 73
    3.4.6 實驗結果與討論 .................................................................................................... 75
    3.4 結論 ............................................................................................................................... 77
    第四章正交混頻器設計 .......................................................................................................... 83
    4. 1 簡介 .............................................................................................................................. 83
    4.1.1 正交混頻器設計方法 ............................................................................................ 85
    4.1.2 正交混頻器重要參數介紹 .................................................................................... 87
    4. 2 0.18 μm CMOS 正交混頻器 ........................................................................................ 92
    4.2.1 介紹 ......................................................................................................................... 92
    4.2.2 被動電路模擬結果 ................................................................................................ 93
    4.2.3 正交混頻器模擬與量測結果討論 ........................................................................ 97
    4.2.4 降頻端模擬與量測結果討論(Down conversion) ................................................ 100
    4.2.6 升頻端模擬與量測結果討論(Up conversion) .................................................... 107
    4.2.7 訊號隔絕度量測結果 ........................................................................................... 111
    4.3 實驗結果與討論 .......................................................................................................... 113
    第五章 寬頻式主動混頻器 .................................................................................................. 115
    5.1 介紹 .............................................................................................................................. 115
    5.2 BiFET 吉爾伯混頻器設計 .......................................................................................... 118
    5.2.1 介紹 ...................................................................................................................... 118
    5.3 平衡器運用混頻器探討 .............................................................................................. 125
    5.4 數位訊號調變之應用 .................................................................................................. 127
    5.4.1 介紹 ....................................................................................................................... 127
    5.4.2 被動平衡器之調變器應用於數位訊號調變 ....................................................... 127
    5.4.3.主動平衡器之調變器應用於數位訊號調變 ....................................................... 129
    5.4.4 實驗結果與討論 ................................................................................................... 130
    5.5 結論 .............................................................................................................................. 131
    第六章 結論 .......................................................................................................................... 134
    參考文獻 ............................................................................................................................... 137
    Reference 參考文獻
    [1]張鴻埜,毫米波反射式調變器之研究及其應用,國立台灣大學電信工程學研究所博士論文,民國九十三年。
    [2]吳佩憙,微波及毫米波平衡不平衡轉換器之設計及其應用,國立台灣大學電信工程學研究所博士論文,民國九十五年。
    [3]張豐證,應用於微波及毫米波頻段之寬頻混波器,國立台灣大學電信工程學研究所碩士論文,民國九十五年。
    [4]梁恭豪,高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統,國立中央大學電機工程研究所博士論文,民國九十七年。
    [5]B. Razavi, RF microelectronics, Prentice Hall Inc, New York, 1998.
    [6]Stephen A.Mass, Mircowave Mixers, 2nd Edition, Artech House, 1995.
    [7]David M.Pozar, Microwave Engineering, 3rd Edition, Wiley,2005.
    [8]G. D. Vendelin, A. M. Pavio and U.L. Rohade, Design of Microwave Circuits Using Linear and Nonlinear Techniques, 2nd Edition, Wiley, 2005.
    [9]H. S. Kang,B. G. Chol, and C. S. Park, “A New Switching Technique for Low Power Mixer with Body Terminal,” IEEE Radio and Wireless Symposium, pp.439-441, Jan. 2007.
    [10]T. Y. Yang and H. K. Chiou, “A 16-46 GHz Mixer Using Broadband Multilayer Balun in 0.18-µm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 7, ,July 2007.
    [11]S. Kang,B. G. Chol, and C. S. Park, “A New Switching Technique for Low Power Mixer with Body Terminal,” IEEE Radio and Wireless Symposium, pp.439-441, Jan. 2007.
    [12]P. Vizmulleri, RF Design Guide: Systems, Circuits and Equations, Artech House,1995.
    [13]Komoni. K, Dawe. G, Sonkusale, S. “Fundamental Performance Limits and Scaling of a CMOS Passive Double-Balanced (FET-Quad) Mixer” Proceedings of the International IEEE Northeast Workshop on Circuits and Systems (NEWCAS '08), Montreal, Canada, June 2008.
    [14]Komoni. K, Dawe. G, Sonkusale, S. “Modeling, simulation and implementation of a passive mixer in 130 nm CMOS technology and scaling issues for future technologies” in Proc. IEEE Northeast Workshop on Circuits and Systems (NEWCAS '08), Aug. 2008, pp 410-413.
    [15]Y. Hamada, K. Maruhashi, M. Ito, S. Kishimoto, T. Morimoto, and K. Ohata. “60-GHz-band Compact IQ Modulator MMIC for Ultra-high-speed Wireless Communication.” Microwave Symposium Diq.11-16, June 2006, pp.1701-1704.
    [16]Joseph C. Bardin and Sander Weinreb,“ A 0.5-20 GHz Quadrature Downconverter.” Bipolar/BiCMOS Circuits and Technology Meeting, pp186-189, Oct. 2008.
    [17]Chin-Shen Lin, Hong-Yeh Chang, Pei-Si Wu, Kun-You Lin, and Huei Wang, “A 35-50 GHz IQ-Demodulator in 0.13-μm CMOS Technology”, Microwave Symposium, 2007, IEEE MTT-S International, June 2007, pp1397-1400.
    [18]Hung-Chih Chuang, Chih-Ming Lin ,Che-Hung Lin, and Yeong-Her Wang “A K- to Ka-Band Broadband Doubly Balanced Monlithic Ring Mixer” IEEE Microwave and Wireless Components Letters, vol.18, no.6, June 2008, pp 401-403.
    [19]J. L. Chen ,S. F. Chang, and B. Y.Laue, “A 20-40 GHz monolithic doubly-balanced mixer using modified planar marchand baluns,” in Proc.Microw.Conf. Asia- Pacific, Dec.2001, 2001,pp.131-134.
    [20]Hong Yeh Chang, Pei Si Wu, Tian Wei Huang, Huei Wang, Chung-Long chang and John G.J Chern, “Design and Analysis of CMOS Broad-Band Compact High-Linearity Modulators for Gigabit Microwave/Millimeter-Wave Applications” IEEE Transactions on Microwave Theory and Techniques, vol.54,no.1, pp1190-1199 January 2006.
    [21]Hwann Kaeo Chiou, Tsung Yu Yang, “Low-Loss and Broadband Asymmetric Broadside-Coupled Balun for Mixer Design in 0.18-μm CMOS Technology,” design” IEEE Transactions On microwave Theory And Techniques, vol.56, no.4, pp 835-848, April 2008.
    [22]Kung Hao Liang, Hong Yeh Chang, Yi Jen Chan “A 0.5-7.5 GHz Ultra low-Voltage Low-Power Mixer Using Bulk-Injection Method by 0.18-um CMOS Technology” IEEE Microwave and Wireless Components Letters, vol.17, no.7, pp 531-533, July 2008.
    [23]Chin Shen Lin, Pei si Wu, Mei Chap Yeh, Jia Shiang Fu, Hong Yeh Chang, Kun-You Lin, Huei Wang “Analysis of Multiconductor Coupled-Line Marchand Baluns for Miniature MMIC design” IEEE Transactions On microwave Theory And Techniques, vol.55, no.6, pp 1190-1199
    [24]Hung Ju Wei, Chin chun Meng, PO Yi Wu, and Kuan-Chang Tsung “K-band CMOS Sub-Harmonic Resistive Mixer With a Miniature Marchand Balun on Lossy Silicon Substrate” IEEE Microwave and Wireless Components Letters, vol.18, no.1, pp 40-42, January 2008.
    [25]C. S. Lin, P. S. Wu, M. C. Yeh, J. S. Fu, H. Y. Chang, K. –Y. in, H. Wang “Analysis of Multiconductor Coupled-Line Marchand Baluns for Miniature MMIC Design,” IEEE Trans. Microw. Theory Tech., vol.55, no.6, June 2007.
    [26]H. J. Wei, C. C. Meng, P. Y. Wu, and K. C. Tsung “K-band CMOS Sub-Harmonic Resistive Mixer With a Miniature Marchand Balun on Lossy Silicon Substrate.” IEEE Microw. Wireless Compon. Lett., vol.18, no.1, Jan. 2008.
    [27]T. Y. Chang and J. S. Lin, “1-11GHz Ultra-Wideband Resistive Ring Mixer in 0.18-µm CMOS Technology,” in Proc. IEEE RFIC Symp. Dig., pp.11-13, Jun. 2006.
    [28]R. Circa, D. Pienkowski, and G. Boeck., “Integrated 130nm CMOS passive mixer for 5 GHz WLAN applications” ,2005 SBMO/IEEE MTT-S Int. Conf., pp. 103-106, July 2005.
    [29]R. Circa, D, Pienkowski, G. Boeck, R. Kakerow, M. Mueller, and R. Wittmann, “Resistive mixers for reconfigurable wireless front-ends”, IEEE RFIC Symp., pp. 513-516, June 2005.
    [30]T. Chang, and J. Lin, “1-11 GHz ultra-wideband resistive ring mixer in 0.18μm CMOS technology”, IEEE RFIC Symp., June 2006.
    [31]B. M. Motlagh, and et al., “Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology”, IEEE Micro. Wireless Compon. Lets., vol. 16, pp. 25-27, Jan.2006.
    [32]M. Varonen, M. Karkkainen, and K.A.I. Halonen, “V-band balanced resistive mixer in 65-nm CMOS”, IEEE ESSCIRC Conf., pp. 360-363, Sept. 2007.
    [33]I. Lo, X. Wang, O. Boric-Lubecke, Y. Hong, and C. Song, “Wide-band 0.25 µm CMOS Passive Mixer”, IEEE Radio and Wireless Symposium(RWS’09), pp.502 – 505, Jan. 2009.
    [34]楊宗育,微波/毫米波頻段寬頻與低損耗金氧半導體平衡至不平衡轉換器之研製及其應用,國立中央大學電機工程研究所博士論文,民國九十七年。
    [35]P. Gould, C. Zelley, J. Lin, “A CMOS Resistive Ring Mixer MMICS for GSM 900 and DCS 1800, Base Station Applications”, in 2000 IEEE MTT-S Int. Microwave Symp. Dig., ~01.1p, p. 521- 524, 2000.
    [36]B. Gilbert, “A precise foure-quadrant multiplier with subnanosecond response,” IEEE JSSCC, vol. SC-3, no. 4, pp. 365-373, Dec 1968.
    [37] G. K. W. Hamed, A. P. Freundorfer, Y. M. M. Antar, P. Frank, and D. Sawatzky, “A high-bit rate ka-band direct conversion QPSK demodulator,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 365–367, May 2008.
    [38]J.-H. Tsai and T.-W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping forMMWwireless gigabit applications,” IEEE Microw. Theory Tech., vol. 55, no. 10, pp. 2075–2085, Oct. 2007
    [39]P. Lindberg, E. Ojefors, E. Sonmez, and A. Rydberg, “A SiGe HBT 24 GHz sub-harmonic direct-conversion IQ-demodulator,” in Proc. Topic Meeting Silicon Monolith. Integr. Circuits RF Syst., Sep. 8–10, 2004, pp. 247–250.
    [40] A. P. Freundorfer, K. Hamed, Y. Sun, Y. Antar, P. Frank, and D. Sawatzky, “A direct digital 2 Gb/s modulator/demodulator experiment in GaAs HBT at 30 GHz,” in Proc. Asia-Pacific Microw. Conf., Dec.2006, pp. 1611–1614.
    [41] S. Sarkar, D. A. Yeh, S. Pinel, and J. Laskar, “60-GHz direct-conversion gigabit modulator/demodulator on liquid-crystal polymer,” IEEE Microw. Theory Tech., vol. 54, no. 3, pp. 1245–1252, Mar. 2006.
    [42]C. Y. Chang, S. H. Weng, C. C. Chiong, “A 30–50 GHz Wide Modulation Bandwidth Bidirectional BPSK Demodulator Modulator With Low LO Power, ” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp.332-334, May 2009.
    Advisor
  • Hong-Yeh,Chang(張鴻埜)
  • none(詹益仁)
  • none(辛裕明)
  • Files
  • 965201063.pdf
  • approve in 2 years
    Date of Submission 2009-07-20

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.