Title page for 963403030


[Back to Results | New Search]

Student Number 963403030
Author Pin-hou Sun(孫稟厚)
Author's Email Address No Public.
Statistics This thesis had been viewed 1296 times. Download 370 times.
Department Mechanical Engineering
Year 2010
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language zh-TW.Big5 Chinese
Title Tensile propertie and gas blow forming characteristics of the fine-grained magnesium alloy AZ31B thin sheet
Date of Defense 2011-05-26
Page Count 219
Keyword
  • dislocation creep
  • dynamic recrystallization
  • fine-grained AZ31B Mg alloy
  • Quick plastic forming
  • Superplastic forming
  • Abstract In this study, a series of experiments of tensile tests and gas blow forming was performed to explore the flow behaviors and rapid gas blow formability of the fine-grained AZ31B and AZ31B-H24 Mg alloy sheets. The AZ31B-O of material was supplied by POSCO Ltd, with a thickness of 0.6mm. The Mg alloy AZ31B-H24 sheet used in this work, with a thickness of 0.5mm in H24 temper condition, was provided by Magnesium Elektron North American Inc. (USA). Tensile tests were carried out on specimens in the rolling direction, using initial strain rates in the range of 4×10−3 to 1×10−1 s−1 at temperatures of 250, 300, 370 and 420 °C. The flow behaviors and associated microstructure changes of fined-grained wrought AZ31B-O and AZ31B-24 Mg alloy sheets deformed in tension were analyzed in this work. Free bulging tests were performed by deforming the sheet into a right cylindrical die cavity by compressed argon gas. Gas blow forming was carried out at temperatures of 200, 250, 300, 370 and 420 °C using various pressurization profiles. Decreasing the forming time in gas blow forming using stepwise pressurization profiles and constant gas blow forming, which were non-constant gas blow fotming, were conducted to investigate the rapid gas blow formability.
      Results showed that variations in flow behavior under tension could be related to the changes in microstructure resulting from applied tensile conditions. During hot deformation, some metallurgical phenomena such as strain-hardening, dynamic recovery, and dynamic recrystallization (DRX) may occur simultaneously, resulting in the changes in the microstructure and mechanical properties. The stress-strain rate data showed that fine-grained AZ31B thin sheet on testing at higher temperatures exhibited strain rate sensitivity exponent values of approximately 0.27 in a strain rate ranging from 4×10‒3 and 2×10‒2 s‒1, indicating that the dislocation creep would be a possible deformation mechanism to reduce forming time in gas blow forming. The tensile test results of the AZ31B-H24 alloy sheet suggested that gas blow formability could be enhanced at lower temperatures. DRX should play an important role in enhancing formability. Thus, low temperature gas blow forming would be a possible process by using Mg alloy AZ31B in H24 condition at lower temperatures.
     The AZ31B-O and AZ31B-h24 alloy sheets were successfully deformed into hemispherical domes at different temperatures under various pressurization profiles. A stepwise pressurization profile should be a suitable process at lower temperatures, whereas a constant or near constant pressure imposed during forming would be a better method at higher temperatures. The fine-grained AZ31B-O alloy sheet could be gas blow formed using Quick plastic forming (QPF) process. Whereas, the formability of AZ31B-H24 was better than that of fine-grained AZ31B-O during low temperature gas blow forming. Forming a shallow rectangular pan demonstrated the possibility of using QPF process. Cavitition level in Mg alloy AZ31B was lower than that in Al alloy 5083 during fast gas bloe forming. A significant reduction in forming time was achieved using traditional female die forming, in which a rectangular pan was formed with a height of 10 mm in less than 163 s. Fillet radius of the rectangular pan should be one of the key factors influencing forming time. An innovated male die gas forming with pre-deformation was also proposed in this study. It is feasible to form a rectangular pan with high surface quality in less than 160 s.
    Table of Content 摘要I
    AbstractII
    謝誌IV
    目錄V
    表目錄VIII
    圖目錄IX
    符號說明XIV
    第一章 緒論1
    1-1前言1
    1-1-1 吹氣成形機制2
    1-2研究方向與目的2
    第二章 理論基礎與文獻探討5
    2-1超塑性成形概論5
    2-1-1組織超塑性(Structural Superplasticity)5
    2-1-2變態型超塑性(Transformation superplastic)5
    2-1-3 超塑性成型之優點5
    2-1-4 合金元素對鎂合金的影響[5][15]6
    2-2鎂合金之晶粒細化7
    2-2-1 H 材與O 材微觀組織之差異7
    2-2-2鎂合金之晶粒細化8
    2-3溫度對於鎂合金之變形影響8
    2-3-1 細晶鎂合金AZ31超塑性特性9
    2-3-2晶界滑移現象9
    2-4回復與再結晶( recovery and recrystallization ) [34]10
    2-4-1回復10
    2-4-2再結晶(recrystallization )11
    2-4-3晶粒成長12
    2-5材料的動態再結晶行為12
    2-6 流變應力方程式13
    2-6-1薄殼理論應力分析13
    2-7 視定塑性力學法15
    2-8 超塑性之空孔17
    2-8-1 超塑性之空孔生成17
    2-8-2 超塑性之空孔成長機制18
    2-9 超塑性空孔控制成長機制20
    2-10快速氣壓成形(QPF, Quick plastic Forming)20
    2-10-1QPF變形機制(QPF, Deformation mechanisms)21
    2-10-2 QPF變形微結構機制23
    第三章實驗方法與討論34
    3-1實驗材料34
    3-2實驗分析設備34
    3-3實驗方法與步驟34
    3-3-1高溫拉伸實驗34
    3-3-2快速氣壓成形半球自由成形35
    3-3-3成形過程之變形狀態分析36
    3-3-4成形過程應變速率之分析37
    3-3-5成形厚度之預測與假設37
    3-3-6顯微組織觀察38
    第四章 鎂合金AZ31薄板高溫拉伸51
    4-1拉伸特性研究51
    4-1-1 O材不同應變速率拉伸結果52
    4-1-2 H材於不同應變速率拉伸結果54
    4-1-3 AZ31B-O材於不同溫度來探討拉伸結果55
    4-2拉伸試片顯微結構變化研究56
    4-2-1 AZ31B-O與AZ31B-H24原材金相觀察56
    4-2-2 AZ31B-O之拉伸試片顯微組織結構56
    4-2-3 AZ31B-H24之拉伸試片金相觀察58
    4-3 鎂合金高溫變形特性60
    4-3-1 AZ31B-H24高溫應變速率敏感性60
    4-3-2 AZ31B-O高溫應變速率敏感性61
    第五章 氣壓成形實驗81
    5-1 鎂合金AZ31B半球成形分析81
    5-1-1 氣壓成形分析81
    5-2 AZ31-O鎂合金薄板半球成形83
    5-2-1 AZ31B-O成形過程半球幾何形狀分析83
    5-2-2 AZ31B-O材薄板半球成形性83
    5-2-3 鎂合金AZ31B-O半球自由成形特性84
    5-3 AZ31-H24鎂合金薄板半球成形90
    5-3-1 AZ31B-H24成形過程半球幾何形狀分析90
    5-3-2 AZ31B-H24材薄板半球成形性90
    5-3-3 鎂合金AZ31B-H24半球自由成形特性91
    5-4 低溫氣壓成形95
    5-4-1低溫氣壓成形過程半球幾何形狀分析96
    5-4-2低溫氣壓成形性分析96
    5-4-3低溫氣壓厚度變化應變分析96
    5-4-4 低溫氣壓成形之半球微結構分析97
    5-4-5低溫氣壓成形之應變分析98
    5-5 鎂合金AZ31B-O快速氣壓成形之盒狀成形99
    5-5-1傳統母模快速氣壓成形99
    5-5-2改良式公模快速氣壓成形102
    5-5-3 鎂合金快速氣壓成形實作成品104
    5-6平面應變對5083 超塑性鋁合金超塑性變形104
    第六章 結 論182
    參考文獻184
    附錄一 (實驗模具圖)191
    附錄二 (實作成品)194
    作者簡歷197
    (發表期刊論文著作)197
    Reference 1.I.J. Polmear, “Recent Developments in Light Alloys”, Mater. Trans., JIM, vol. 37, 1996, p.12.
    2.I.J. Polmear, “Magnesium Alloys and Applications”, Mater. Sci. Technol., vol. 10, 1994, p.1.
    3.Z. Zhang, A. Couture and A. Luo, “An Investigation of the Properties of Mg-Zn-Al Alloys”, Scripta Materialia., vol.39, 1998, p.45.
    4.S. Kaya, T. Altan, P. Groche, C. Kloposch, “Determination of flow stress of magnesium AZ31B-O sheet at elevated temperature using the hydraulic bulge test”, International Journal of Machine Tool & Manufacture 48, 2008, pp.550.
    5.Hiroyuki Watanabe, Masao Fukusumi, “Mechanical properties and texture of a superplastically deformed AZ31 magnesium alloy”, 2007, Materials Science and Engineering A.
    6.K.F. Zhang, D.L. Yin and D.Z. Wu, “Formability of AZ31 magnesium alloy sheet at warm working conditions”, International Journal of Machine Tool & Manufacture 46, 2006, p.1276.
    7.S.M. Fatemi-Varzaneh, A.Zarei-Hanzaki, H.Beladi, “Dynamic recrystallization in AZ31 magnesium alloy”, Materials Science and Engineering A 456, 2007, p.52.
    8.A. Mwembela, E.B. Konopleva, and H.J. McQueen, “Microstructural development in Mg alloy AZ31 during hot working”, Scripta Mater.37(11), 1997, p.1789.
    9.M.M. Avedesian, H. Baker, ASM Specialty Handbook Magnesium and Magnesium Alloys, Materials Park, OH, ASM International, 1999.
    10.Z. Horita, M. Furukawa, K. Ohisif, M. Nemoto and T. G. Langdon:The 4th International Conference on Crystallization and Related Phenomena, Ed. T. Sakai and H. G. Suzuki, The Japan Institute of Metals, 1999, p.301.
    11.J.W. Edington, K.N. Melton and C.P. Cutler, “Progress In Mat Sci.”, Vol.21, No2, 1976, p.61.
    12.C.H Hamilton, A.K Ghosh and J.A. Wert, “Metals Form”, Vol.8, No.4, 1985, p.172.
    13.O.A. Kaibyshev, A.I. Pshenichniuk and V.V. Astanin, “Superplastic resulting from cooperative grain boundary sliding”, Acta mater. Vol. 46, No. 14, 1998, p. 4911.
    14.賴耿陽, “非鐵金屬材料”, 復漢出版社, 新竹, 1998, pp.174~191.
    15.ASM, “Magnesium Alloys”, Metals Handbook 9th Edition, Vpl.6, 1985, pp.425~434.
    16.T. Lyman and H.E. Boyer, “Metallography, structure and phase diagrams” , Metals Handbook, ASM, vol. 8, 1973, p. 251.
    17.G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology, Vol. 8, 1996, p.113.
    18.J.A. Chapman, D.V. Wilson: J. Inst. Metals, 91, 1962-63, p.35.
    19.王建義, “鎂合金板材之壓形加工”, 工業材料雜誌, 170期, 90年2月
    20.Yoshinaga, Ft., Horiuchi, R., “Deformation mechanisms in magnesium single crystals compressed in the direction parallel to the hexagonal axis”, Trans. JIM 4, 1963, p.1.
    21.Sean R. Agnew, Ozgur Duygulu, “Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B”, International Journal of Plasticity 21, 2005, p.1161.
    22.Mordike B L, EBERT T. Magnesium properties applications potential [J]. Mater Sci Eng A, 302(1), 2001, p.37.
    23.J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama, “Grain-boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K”, Mater. Trans. 44, 2003, p.445.
    24.R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verma, P.E. Krajewski “Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy”, Acta Materialia 57, 2009, p.3683.
    25.J.C.Tan, M.J.Tan., “Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet”, Materials Science and Engineering A, 2002, p.1.
    26.Yasumasa Chino, Katsuya Kimura, Mamoru Mabuchi, “Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy”, Materials Science and Engineering A 486, 2008, p.481.
    27.D.V. Wilson, J. Inst. Met. 98, 1970, p.133.
    28.T. Mukai, M. Yamanoi, H.Watanabe, K. Higashi, Scripta Mater.45, 2001, p.89.
    29.Yasumasa Chino, Katsuya Kimura, Mamoru Mabuchi, “Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy”, Materials Science and Engineering A 486, 2008, p.481.
    30.J.W. Edington, K.N. Melton and C.P. Cutler, “Superplasticity”, Prog. Mater. Sci., Vol. 21, 1976, p.61.
    31.O.D. Sherby and J. Wadsworth, “Superplasticity-Recent Advances and Furture Direction”, Prog. Mater. Sci., Vol. 33, 1989, p.169.
    32.G. Rai. and N. J. Grant, “Observations of Grain Boundary Sliding during Superplasticity Deformation”, Metall. Trans., Vol. 14A, 1983, p.1451.
    33.M. Zhao and P. Chen, “A Complex Mechanism for Superplastic Deformation of Magnesium Alloys”, Warrendale, PA, Minerals, Metals and Materials Society, 1988, p.67.
    34.T.G. Langdon, “An Evaluation of the Strain Contributed by Grain Boundary Sliding in Superplasticity”, Mater. Sci. Eng., A174, 1994, p.225.
    35.J.F. Humphreys, “Recrystallization and Recovery”, in Material Science and   Technology., Vol.15, ed. by R. W. Cahn, P.Haasen and E. J. Kramer, VCH, 1991, p.371.
    36.A. Jäger, P. Lukáˇc, V. Gärtnerová, J. Bohlen, K.U. Kainer, “Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures”, Journal of Alloys and Compounds 378 ,2004, p.184.
    37.M.M. Myshlyaev, H.J. McQueen, A. Mwembela, E. Konopleva, “Twinning, dynamic recovery and recrystallization in hot work Mg-Al-Zn alloy”,Materials Science and Engineering A337, 2002, p.121.
    38.Robert E. Reed-Hill, Reza Abbaschian, “Physical Metallurgy Principles”, Baker & Taylor Books, 1991.
    39.J.F. Humphreys and M. Hatherly, “Recrystallization and related annealing phenomena”, Oxford, UK, Pergamon, Tarrytown, N. Y., U.S.A., 1996, p. 363.
    40.S.H. C. Park, Y.S. Sato and H. Kokawa, “Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test”, Scripta Mater., vol. 49, 2003, p.161.
    41.Yamaha Motor Co. Ltd, Iwata and Shizuoka, “Dynamic recrystallization and  dynamic recovery in pure aluminum at 583 K”, Acta Metall., vol. 43, 1995, p.723.
    42.M. Ferry and P.R. Munroe, “The effect of subgrain size on the static recrystallization behavior of an aluminum-based metal-matrix composite”, Scripta Mater., vol. 33, 1995, p.857.
    43.M.A. Michael, H. Baker, ASM-Specialty Handbook, ASM International, Materials Park, OH, 1999.
    44.J.C. Tan, M.J. Tan, Mater. Sci. Eng. A 339, 2003, p.124.
    45.M.R. Barnett, Mater. Sci. Forum 426–432, 2003, p.515.
    46.H. Takuda, S. Kikuchi and N. Hatta, “Possibility of Grain Refinement for Superplasticity of Mg-Al-Zn Alloy by Pre-Deformation”, J. Mater. Sci., Vol. 27, 1992, p.937.
    47.N. Osada, K. Ohtoshi, M. Katsuta, S. Takahashi and T. Yamada, “The Influence of the Annealing Temperature on Uniaxial and Biaxial Deformation of the AZ31 Magnesium Alloy Sheet”, J. JIM, Vol. 50(2), 2000, p.60.
    48.C.A.C.Imbert, H.J.McQueen, “Peak strength, strain hardening and dynamic estoration of A2 and M2 tool steels in hot eformation” [J], Materials Science and Engineering A313, 2001, p.88.
    49.T. Mohri, T. Nishiwaki, T. Kinoshita, H. Iwasaki, M. Mabuchi, M. Nakamura, T. Ashina, T. Aizawa and K. Higashi, “Microstructure and Tensile Properties of Rolled Mg-5.5mass%-0.6mass%Zr Alloy”, Mater. Trans., JIM, Vol. 41(9), 2000, p.1154.
    50.D. Magers and J. Willekens, “Global Outlook on the Use of Magnesium die-Castings in Automotive Applications”, Proc.
    51.B.L. Mordike and K.U. Kainer, Magnesium alloys and their applications, proceedings volume. , Matinfo Werkstoffinformationsgesellschaft, Frankfurt, 1998, p.105.
    52.A. Bussiba, A. Ben Artzy, A. Shtechman, Sifergan and M. Kupiec, “Grain  Refinement of AZ31 and ZK60 Mg Alloys-Towards Superplasticity Studies”, Mater. Sci. Eng., A302, 2001, p.56.
    53.H.J. McQueem, N.D. Ryan, E.V. Konopleva and X. Xia, “Formation and Application of Grain Boundary Serrations”, Can. Metall. Q., Vol. 34(3), 1995, p.219.
    54.T. Sakai and J.J. Jonas, “Dynamic Recrystallization: Mechanical a Microstructural Considerations”, Acta Metall., Vol. 32(2), 1984, pp. 189.
    55.J.P. Sah, G.J. Richardson and C.M. Sellars, “Grain-Size Effects During Dynamic Recrystallization of Nickel”, Metal. Sci., Vol. 8(10), 1974, p. 333.
    56.Yong-Qi Cheng, Hui Zhang, Zhen-Hua Chen, Kui-Feng Xian, “Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation”, 2008, p.29.
    57.Z. Marciniak, J.L. Duncan and S.J. Hu, “Mechanics of Sheet Metal Forming”, p129-130, Butterworth-Heinemann.
    58.VUKOTA BOLJANOVIC, “Sheet Metal Forming Processes And Die Design”, Industrial press New York
    59.J. Wittenauer, W.J. Kim, O.D. Sherby, “Superplastic gas-pressure deformation of iron carbide sheet”, Materials Science and Engineering A194, 1995, p.69.
    60.J. Wittenauer, T.G. Nieh and J. Wadsworth, “Superplastic gas-pressure deformation of YTZ sheet”, J. Am. Ceram. Soc., 76(7), 1993, p.1665.
    61.S.W. Chung, K. Higashi, W.J. Kim, “Superplastic gas pressure forming of fine-grained AZ61 magnesium alloy sheet”, Materials Science and Engineering A 372, 2004, p.15.
    62.Pin-Hou Sun, Horng-Yu Wu, Hsin-Han Tsai, Chih-Chao Huang, Ming-Da Tzou, "Effect of pressurization profile on the deformation characteristics of fine-grained AZ31B Mg alloy sheet during gas blow forming", Journal of Materials Processing Technology 210 ,2010, p.1673.
    63.P.-H. Sun, H.-Y. Wu, W.-C. Hsu, H.-H. Tsai, C.-C. Huang and S. Lee, 'Deformation characteristics of fine grained magnesium alloy AZ31B thin sheet during rapid gas blow forming', Materials Science and Technology, Vol 26, NO.9, 2010, p.1095.
    64.S. Kaya, T. Altan, P. Groche, C. Klopsch, “Determination of the flow stress of magnesium AZ31-O sheet at elevated temperatures using the hydraulic bulge test” International Journal of Machine Tools & Manufacture 48 , 2008, p.550.
    65.Gerhard Gutscher, Hsien-Chih Wu, Gracious Ngaile, Taylan Altan, “Determination of flow stress for sheet metal forming using the viscous pressure bulge (VPB) test”, Journal of Materials Processing Technology 146, 2004, p.1.
    66.R. Hill, A Theory of Plastic Bulging of a Metal Diaphragm by Lateral Pressure, Philosophical Magazine Series 7 (41) ,1950, p.1133.
    67.W. Panknin, Der Hydraulische Tiefungsversuch und die Ermittlung von Fliesskurven, “The hydraulic bulge test and the determination of the flow stress curves”, Dissertation, Institute for Metal Forming, University of Stuttgart, Germany, 1959.
    68.J. Pilling and N. Ridley, 3rd. Int. Aluminum-Lithium Conf. Eds. C. Backer, P.J. Gregson, S.J. Harris, and C.J. Peel, Institute of Metals, London, 1985, p184.
    69.D.J. Miller and T.G. Langdon, Trans. JIM, Vol.21, 1980, p123.
    70.A.H. Chokshi, J. Mat. Sci. Lett. Vol. 5, 1986, p.144
    71.C.C. Bampton and J.W. Edington, Metall. Trans. Vol. 13A, 1982, p.1721
    72.P. Shariat, R.B. Vastava and T.G. Langdon, Acta Metall, Vol. 30, 1982, p.258.
    73.A.E. Geckinli, Metal Sci, Vol.17, 1983, p.12.
    74.R.C. Gifkins, Superplastic Forming of Structural Alloys Eds. N.E. Paton and C.H. Hamilton, TMS-AIME, Warrendale, PA., USA, 1982, p.3
    75.J.R. Spingan and W.D. Nix, Acta Metal, Vol.26, 1978, p1389.
    76.J. Pilling, B. Geary and N. Ridley, ICSMA 7, Ed. H. J. McQueen and J.P. Bailon, Pergamon Press. Oxford, 1985, p.823
    77.Clark, M. A., and C.H. Hamilton, Metallurical Transactions, Vol. p.1195
    78.C.H. Hamilton, B.A. Ash, D. Sherwood, and H.C. Heikkinen, Superplasticity Areospace, Ed. H.C. Heikkinen and T.R. McNelley, The Metallurgical Socity, Inc, Warrendale, Pennsylvania, 1988, p.29
    79.D. S. Wilkinson and C. H. Caceres, Journal of Material Science Letters, Vol. 3, 1984, p.395
    80.S.Y. Lin, Master Thesis, Depatment of Mechanical Engineering, National Central University, Chung-Li, Taiwan, 1991, p.16
    81.H.Y. wu, J.T. Chern and S. Lee, Manufacturing, Vol, 10, 1995, p.319
    82.R. Raj and M.F. Ashby, Acta Metal, 35, 1987, p1089
    83.J.W. Hanconk, Metal Sci., Vol.10, 1976, p.319
    84.A.K. Chokshi and T.G. Langdon, Acta Metal, 35, 1987, p.1089
    85.N. Ridley, NATO/AGARD Lecture Serirs No.168, Superplasticity, Oct, 1989, Ch.4
    86.J. Pilling and N. Ridley, Acta Metal, 34, 1986, p.699
    87.D.W. Livesey and N. Ridley, Metal. Sci, Vol. 16, 1982, p.563
    88.A. Varloteaux and M. Suery, Superplasticity in Aerospace-Aluminum, Eds. R. Pearce and L. Kelly, SIS, Cranfield, Bedford, England, 1985, p.55
    89.C.C. Bampton and R. RAJ, Acta Metal, Vol.30, 1982, p.2043
    90.J.Pilling, Mat. Sci. and Technol, Vol.1, 1985, p.461
    91.Y.Q. Song J. Zhao, A Mechanical Analysis of the Superplastic Free Buling of Metal Sheet, Materical Science and Engineering 84, 1986, p.111
    92.T.G. Nieh, C.H. Henshall, J. Wadsworth, Scripta Metall, 18, 1984, p.1405.
    93.T.G. Nieh, P., Gilman, J. Wadsworth, Scripta Metall, 19, 1985, p.1375.
    94.M. Mabuchi and K. Higashi, JOM, June, 1998, 34.
    95.C.J. Lee, J.C. Huang, Acta Materialia, 52, 2004, p.3111.
    96.H.K. Lin, J.C. Huang, T.G. Langdon, Mater. Sci. Eng. A, A402, 2005, p.250.
    97.O.D. Sherby and J. Wadsworth: Progr. Mater. Sci., 33, 1989, p.169.
    98.O.D. Sherby, M. Burke, Prog. Mater. Sci., 13, 1966, p.323.
    99.J.W. Edington, K.N. Melton and C.P. Cutler, Prog. Mater. Sci.21, 1976, p. 67.
    100.W.J. Kim, J.D. Park, U.S. Yoon, “Superplasticity and superplastic forming of Mg-Al-Zn alloy sheets fabricated by strip casting method”, J.Alloys Compd. 464, 2008, p.197.
    101.J.A. Del Valle, M.T. Perez-Prado, O.A. Ruano, Metall. Mater. Trans., 36A, 2005, p.1427.
    102.H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi, Intern. J. Plast. 17, 2001, p.387.
    103.H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi, Acta mater., 47, 1999, p.3753.
    104.S.S. Vagarali, T.G. Langdon, Acta Metall., 30, 1982, p.1157.
    105.J.J. Blandin, D. Giunchi, M. Suéry, E. Evangelista, Mater. Sc. Tech., 18, 2002, pp.333.
    106.Boissiere, S. Terzi, J.J. Blandin, L. Salvo, 6th EUROSPF Conference, EuroSPF08, Carcassonne, France from 3-5 September 2008, p.1.
    107.C.F. Martin, J.J. Blandin, L. Salvo, Mater. Sc. Eng. A, A297, 2001, p. 212.
    108.F.K. Abu-Farhra, M.K. Khraisheh, Adv. Eng. Mater., 9, 2007, pp.777.
    109.D.H. Sastry, Y.V.R.K. Prasad, K.I. Vasu, Scripta Mater., 3, 1969, p.927.
    110.Y. Chino, M. Kobata, H. Iwasaki, M. Mabuchi, Acta Mater., 51, 2003, p.3309.
    111.H. Somekawa, T. Mukai, Scripta Mater., 54, 2006, 633.
    112.H. Watanabe, H. Tsutsui, T. Mukai, H. Ishikawa, Y. Okanda, M. Kohzu, K. Higashi, Mater. Trans., 42, 2001, p.1200.
    113.D.L. Yin, K.F. Zhang, G.F. Wang, W.B. Han, Mater.Sci.Eng.A, A392, 2005, p.320.
    114.K. Hirai, H. Somekawa, Y. Takigawa and K. Higashi, Scripta Mater., 56, 2007, p.237.
    115.Eric M. Taleff, Louis G. Hector Jr., John R. Bradley, Ravi Verma, Paul E. Krajewski, Acta Mater., 57, 2009, p.2812.
    116.M. Mabuchi, K. Higashi, Acta Mater., 44, 1996, p.4611.
    117.A. Galiyev, R. Kaibyshev, G. Gottstein, Acta mater, 49, 2001, p.1199.
    118.X.Y. Yang, M. Sanada, H. Miura, T. Sakai, Mater. Sci. Forum, 488-489, 2005, 223.
    119.H. Yoshinaga, R. Horiuchi, Trans. JIM 5 (1963) 14–21.
    120.Y.N. Wang, J.C. Huang, “The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy”, Acta Materialia 55, 2007, p.897
    121.Yasumasa Chino, Katsuya Kimura, Masataka Hakamada, Mamoru Mabuchi, “Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy”, Materials Science and Engineering A 485, 2008, p.311
    122.J. Koike, T. Kobayashi, T. Mukai, H.Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Mater. 51, 2003, p.2055.
    123.Yasumasa Chino, Kensuke Sassa, Akira Kamiya, Mamoru Mabuchi, “Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet”, Materials Science and Engineering A 441, 2006, p.349
    124.H.J. McQueen, M. Myshlaev, M. Sauerborn and A. Mwembela In: H.I. Kaplan, J. Hryn and B. Clow, Editors, Magnesium Technology 2000, TMMMS, Warrendale, 2000, p. 355.
    125.S.B.Yi, J.Bohlen, F.Heinemann, D.Letzig, “Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets”, ActaMater.58, 2010, p.592.
    126.R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verma, P.E. Krajewski, “Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy”, Acta Materialia.57, 2009, p.3683.
    127.H.Somekawa, K.Hirai, H.Watanabe, Y.Takigawa, K.Higashi, “Dislocation creep behavior in Mg-Al-Zn alloys”, Mater.Sci.Eng.A, 407 ,2005, p.53–61.
    128.H.Watanabe, H.Tsutsui, T.Mukai, M.Kohzu, S.Tanabe, K.Higashi, “Deformation Mechanism in a Coarse-Grained Mg-Al-Zn Alloy at Elevated Temperature”, Int.J.Plast.17, 2001, p.387.
    129.K. Siegert, S. Jäger and M. Vulcan, “Pneumatic Bulging of Magnesium AZ 31 Sheet Metals at Elevated Temperatures”, CIRP Annals - Manufacturing Technology Volume 52, Issue 1, 2003, p.241.
    130.Donato Sorgente, Leonardo Daniele Scintilla, Gianfranco Palumbo, Luigi Tricarico, “Blow forming of AZ31 magnesium alloy at elevated temperatures”, Int J Mater Form, 2010, 3, p.13.
    131.M.K. Khraisheha, F.K. Abu-Farhaa, M.A. Nazzala and K.J. Weinmann, “Combined Mechanics-Materials Based Optimization of Superplastic Forming of Magnesium AZ31 Alloy”, CIRP Annals - Manufacturing Technology Volume 55, Issue 1, 2006, p.233.
    132.Palaniswamy H, Ngaile G, Altan T. “Finite element simulation of magnesium alloy sheet forming at elevated temperatures”, J Mater Process Technol, 2004,146, p.52.
    133.Y.-M. Hwang, H.S. Lay, J.C. Huang, “Study on superplastic blow-forming of 8090 Al–Li sheets in an ellip-cylindrical closed-die”, International Journal of Machine Tools & Manufacture 42, 2002, p1363.
    134.Y.M. Hwang, J.M. Liew , T.R. Chen and J.C. Huang, “Analysis of superplastic blow-forming in a circular closed-die”, Journal of Materials Processing Technology 57, 1996, p.360.
    Advisor
  • Shyong Lee(李雄)
  • Files
  • 963403030.pdf
  • approve immediately
    Date of Submission 2011-07-01

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.