Title page for 963208016


[Back to Results | New Search]

Student Number 963208016
Author Heng Jheng(鄭亨)
Author's Email Address jh00183@hotmail.com
Statistics This thesis had been viewed 1653 times. Download 2276 times.
Department Energy of Mechatronics
Year 2008
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title production of undoped and Cu-doped visible-light photoelectrode by chemical bath deposition
Date of Defense 2009-07-08
Page Count 82
Keyword
  • chemical bath deposition
  • photoelectrode
  • semiconductor thin film
  • Abstract Abstract
      Hydrogen energy is regarded as prosperous alternative energy in the future. Among the hydrogen production methods, photoelectrochemical method is a promising technology. Based on photocatalytic and electrochemical principles, the photoelectrode absorbs solar energy and electrolyzes water into oxygen and hydrogen ions. The hydrogen ions move in the solution to the counter electrode and recover as hydrogen gas.
      In our experiment, the chemical bath deposition (CBD) method is adopted to produce AgInS2 visible-light photoelectrode film. CBD is simple, cheap, easier in handling waste, and large in area deposition. The influences of working parameters, such as: electrolytic concentration, heat treating, film thickness on the performance of hydrogen production are investigated in details.
      Experiments show that AgInS2 photoelectrode has almost 4 mA/cm2 photocurrent density at 0 bias. After doping Cu into AgInS2 at the same conditions, photocurrent density increases to 5.5 mA/cm2. Therefore, producing hydrogen with AgInS2 photoelectrode by chemical bath deposition is proved to have low-cost, yet efficient in the photo-electron conversion.
    Table of Content 總目錄
    摘要I
    AbstractII
    總目錄III
    表目錄VI
    圖目錄VII
    符號說明XII
    第一章 緒論1
    1.1 前言1
    1.2 光電極發展3
    1.3 化學水浴法(CBD, Chemical Bath Deposition)5
    1.4 AgInS2可見光光電極薄膜7
    1.5 文獻探討8
    1.5.1 光觸媒文獻回顧8
    1.5.2 化學水浴法製備薄膜文獻回顧9
    1.5.3 Ag-In-S化合物半導體薄膜文獻回顧11
    1.5.4 摻雜金屬元素後光觸媒效能提升之文獻回顧14
    1.6 研究目的14
    第二章 化學水浴法原理15
    2.1 離子濃度積與溶解度積15
    2.2 成長機制17
    第三章 實驗步驟與方法20
    3.1 實驗參數設定20
    3.2 實驗藥品與實驗裝置20
    3.2.1 實驗藥品20
    3.2.1.1反應鍍液(Ag+、In3+、S2-)使用藥品20
    3.2.1.2銅(Cu)離子摻雜溶液之使用藥品21
    3.2.1.3 薄膜電性分析時配製電解質溶液之使用藥品22
    3.2.2 實驗基材23
    3.2.3 實驗設備23
    3.3 實驗步驟24
    3.3.1 基材清洗24
    3.3.2 鍍液配製25
    3.3.3 反應鍍液配製方法26
    3.3.4 半導體光觸媒薄膜之後處理27
    3.4 薄膜物性量測分析27
    3.4.1 XRD(X-ray Diffraction, X光粉末繞射儀)27
    3.4.2 SEM(Scanning electron microscope, 掃描式電子顯微鏡)28
    3.4.3 EDS(Energy Dispersive Spectrometer, 能量散射光譜儀)29
    3.4.4 UV-visible(紫外/可見光光譜儀)29
    3.4.5 電化學(光電流)量測分析29
    第四章 結果與討論32
    4.1 AgInS2半導體光觸媒薄膜製備32
    4.1.1 反應物濃度比例( [Ag+]/[In3+] )對薄膜的影響32
    4.1.2 pH值(HNO3含量)對薄膜的影響33
    4.1.3 鍍膜層數對薄膜的影響37
    4.1.4 磁石轉速對薄膜的影響38
    4.1.5 燒結溫度對薄膜的影響39
    4.2 銅摻雜之AgInS2半導體光觸媒薄膜製備40
    第五章 結論與未來展望43
    5.1結論43
    5.2未來展望44
    參考文獻45
    表目錄
    表一 反應溶液參數表..........................................................................51
    表二 銅離子摻雜溶液參數表..............................................................51
    表三 量測電性分析所需配製之溶液參數表......................................52
    表四 實驗變因與參數設定..................................................................52
    表五 薄膜物性檢測儀器表..................................................................53
    表六 EDS化學元素分析 [Ag+]/[In3+]=4, 500rpm, 燒結400℃
       一小時下鍍一層..........................................................................53
    表七 EDS化學元素分析 [Ag+]/[In3+]=4, 500rpm, 燒結400℃
       一小時下鍍二層..........................................................................54表八 EDS化學元素分析 [Ag+]/[In3+]=4, 500rpm, 燒結400℃
       一小時下鍍三層..........................................................................54表九 EDS化學元素分析 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃
       一小時下摻雜銅2%....................................................................55
    表十 EDS化學元素分析 [Ag+]/[In3+]=3, HNO3=15ml, 燒結300℃
       一小時下摻雜銅4%....................................................................55
    表十一 EDS化學元素分析 [Ag+]/[In3+]=4, HNO3=15ml, 燒結  
        300℃一小時下摻雜6%..........................................................56
    圖目錄
    圖1-1 本多-藤島效應系統圖...............................................................57
    圖1-2 光電極原理示意圖....................................................................57
    圖1-3 太陽能量光譜圖........................................................................58
    圖1-4 氧化物光觸媒於犧牲試劑下之產氫與產氧活性....................58
    圖1-5 硫化物光觸媒於犧牲試劑下之產氫活性................................59
    圖1-6 光觸媒摻雜金屬後之能隙圖....................................................59
    圖2-1 化學水浴法成長機制................................................................60
    圖2-2 化學水浴法薄膜成長階段示意圖............................................60
    圖3-1 清洗基材流程圖........................................................................61
    圖3-2 ITO基材封裝後之試片組........................................................61
    圖3-3 金屬陽離子溶液調配流程........................................................62
    圖3-4 用於摻雜之金屬銅離子溶液配製流程....................................62
    圖3-5 化學水浴法流程示意圖............................................................63
    圖3-6 化學水浴法實驗設置圖............................................................63
    圖3-7 布拉格繞射示意圖....................................................................64
    圖3-8 半導體光觸媒薄膜電極封裝示意圖........................................64
    圖4-1 HNO3=15ml, 500rpm, 燒結400℃一小時下, 不同反應物濃度
        比之光電極薄婆XRD圖譜.......................................................65
    圖4-2 [Ag+]/[In3+]=3, 1000rpm, 燒結400℃一小時下, 不同HNO3量
        之光電極薄膜XRD圖譜...........................................................65
    圖4-3 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下, 不同HNO3量之
        光電極薄膜XRD圖譜..............................................................66
    圖4-4 反應時間與薄膜生長厚度關係................................................66
    圖4-5 pH值與薄膜厚度的關係..........................................................67
    圖4-6 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下, HNO3=9ml條
        件下之光電極薄膜光電流量測結果........................................67
    圖4-7 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下, HNO3=15ml
        條件下之光電極薄膜光電流量測結果....................................68
    圖4-8 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下, HNO3=21ml
        條件下之光電極薄膜光電流量測結果....................................68
    圖4-9 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下, 不同HNO3量
        之光電極薄膜XRD圖譜..........................................................69
    圖4-10 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下不同HNO3量
        之光電極薄膜紫外/可見光光譜圖.........................................69
    圖4-11 穿透定律示意圖......................................................................70
    圖4-12 [Ag+]/[In3+]=4、500rpm、燒結400℃一小時下, 不同HNO3
          量之光電極薄膜之能隙..........................................................70
    圖4-13 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下, 鍍膜層數不同
        之光電極薄膜XRD圖譜........................................................71
    圖4-14 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時, 鍍一層條件下之
        光電極薄膜掃描式電子顯微鏡圖..........................................71
    圖4-15 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時, 鍍二層條件下之
        光電極薄膜掃描式電子顯微鏡圖..........................................72
    圖4-16 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時, 鍍三層條件下之
        光電極薄膜掃描式電子顯微鏡圖..........................................72
    圖4-17 [Ag+]/[In3+]=3, HNO3=15ml, 燒結400℃, 一小時下磁石轉速
        不同之光電極薄膜XRD圖譜................................................73
    圖4-18 [Ag+]/[In3+]=3, HNO3=15ml, 燒結400℃一小時下, 磁石轉速
        不同之光電極薄膜紫外/可見光光譜圖.................................73
    圖4-19 [Ag+]/[In3+]=3, HNO3=15ml, 燒結400℃一小時, 磁石轉速
        500rpm條件下之光電極薄膜光電流量測結果....................74
    圖4-20 [Ag+]/[In3+]=3, HNO3=15ml, 燒結400℃一小時, 磁石轉速
        750rpm條件下之光電極薄膜光電流量測結果....................74
    圖4-21 [Ag+]/[In3+]=3, HNO3=15ml, 燒結400℃一小時, 磁石轉速 
        1000rpm條件下之光電極薄膜光電流量測結果..................75
    圖4-22 [Ag+]/[In3+]=4, HNO3=15ml, 磁石轉速500rpm下, 於不同燒 
        結溫度之光電極薄膜XRD圖譜............................................75
    圖4-23 [Ag+]/[In3+]=4, HNO3=15ml, 磁石轉速500rpm下, 於不同燒
        結溫度之光電極薄膜紫外/可見光光譜圖.............................76
    圖4-24 [Ag+]/[In3+]=4, HNO3=15ml, 磁石轉速500rpm, 300℃燒結一
        小時條件下之光電極薄膜光電流量測結果..........................76
    圖4-25 [Ag+]/[In3+]=4, HNO3=15ml, 磁石轉速500rpm, 350℃燒結一
        小時條件下之光電極薄膜光電流量測結果..........................77
    圖4-26 [Ag+]/[In3+]=4, HNO3=15ml, 磁石轉速500rpm, 400℃燒結一
        小時條件下光電極薄膜光電流量測結果..............................77
    圖4-27 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時下不同摻雜
        濃度之光電極薄膜XRD圖譜................................................78
    圖4-28 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅2%
        條件下之光電極薄膜掃描式電子顯微鏡圖..........................78
    圖4-29 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅4%
        條件下之光電極薄膜掃描式電子顯微鏡圖..........................79
    圖4-30 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅6%
        條件下之光電極薄膜掃描式電子顯微鏡圖..........................79
    圖4-31 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅2%
        條件下之光電極薄膜光電流量測結果..................................80
    圖4-32 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅4%
        條件下之光電極薄膜光電流量測結果..................................80
    圖4-33 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅6%
        條件下之光電極薄膜光電流量測結果..................................81
    圖4-34 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅4% 
        條件下之光電極薄膜紫外/可見光光譜圖.............................81
    圖4-35 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅4%
        條件下之能隙值......................................................................82
    Reference 參考文獻
    [1] 經濟部能源局-民國96年能源統計年報
    http://www.moeaboe.gov.tw/opengovinfo/Plan/all/files/EnergyStatistical
    DataBook.pdf
    [2] 茂迪股份有限公司網站提供
    http://www.motech.com.tw/products/pvmodule/NCTSM168WG61.doc
    [3] 經濟部能源局-2007年能源科技研究發展白皮書
    [4] J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. 
      E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M.
      Jones, “40.8% efficient inverted triple-junction solar cell with two   
      Independently metamorphic junctions,” Applied Physics Letters,
      Volume 93, Issue 12, Number 123505, 2008
    [5] A. Fujishima, and K. Honda, ”Electrochemical photolysis of water at
      a semiconductor electrode,” Nature, Volume 238, Number 5358,
      Pages 37-38, 1972
    [6] http://www.ibuyplastic.com/admin/technology_insert/tech_images/31
      2/untitled1.jpg
    [7] T. Bak, J. Nowotny, M. Rekas, and C.C. Sorrell,
      “Photo-electrochemical hydrogen generation from water using solar
      energy. Materials-related aspects,” International Journal of Hydrogen
      Energy, Volume 27, Issue 10, Pages 991-1022, 2002
    [8] V. Rakovics , Zs. J. Horváth, Zs. E. Horváth, I. Bársony, C. Frigeri ,
      and T. Besagni, “Investigation of CdS/InP heterojunction prepared by
      chemical bath deposition,” Physica Status Solidi C, Volume 4, Issue
      4, Pages 1490-1493, 2007
    [9] B. Pejova, M. Najdoski, I. Grozdanov, and S. K. Dey, ” Chemical bath
      deposition of nanocrystalline (111) textured Ag2Se thin films,”
      Materials Letters, Volume 43, Issues 5-6, Pages 269-273, 2000
    [10] D. Hariskos, M. Powalla, N. Chevaldonnet, D. Lincot, A. Schindler 
      , and B. Dimmler, “Chemical bath deposition of CdS buffer layer:
      prospects of increasing materials yield and reducing waste,” Thin
      Solid Films, Volume 387, Issues 1-2, Pages 179-181, 2001
    [11] U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Chemical and
      structural modifications of laser treated iron surfaces: investigation
      of laser processing parameters,” Applied Surface Science, Volume
      230, Issues 1-4, Pages 364-370, 2004
    [12] S. Biswas, M. F. Hossain, T. Takahashi, Y. Kubota, and A. Fujishima,
      “Photocatalytic activity of high-vacuum annealed CdS-TiO2 thin
      film,” Thin Solid Films, Volume 516, Issue 21, Pages 7313-7317,
      2008
    [13] T. Ishiyama, T. Arai, Y. Sato, K. Shinoda, B. Jeyadevan, and K. Tohji
      ,“Photocatalytic efficiency of CdS film synthesized by CBD
      method,” American Institute of Physics Conference Proceedings,
      Volume 833, Pages 23-26, 2006
    [14] H. Liu, and L. Gao, “Synthesis and properties of CdSe-sensitized
      rutile TiO2 nanocrystals as a visible light-responsive
      photocatalyst,” Journal of the American Ceramic Society, Volume
      88, Issue 4, Pages 1020-1022, 2005
    [15] J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel,
      ”Energy bands of AgInS2 in the chalcopyrite and orthorhombic
      Structures,” Physics Review: B, Volume 9, Issue 4, Page 1719, 1974
    [16] H. Kato, and A. Kudo, “Visible-light-response and photocatalytic
      activities of TiO2 and SrTiO3 photocatalysts codoped with 
      antimony and chromium,” Journal of Physical Chemistry B,
      Volume 106, Issue 19, Page 5029, 2002
    [17] R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or
      niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light
      response for H2 or O2 evolution from aqueous solutions,” Physical
      Chemistry Chemical Physics, Volume 7, Issue 10, Pages 2241-2245,
      2005
    [18] A. Kudo, and Y. Miseki, “Heterogeneous photocatalyst materials for
      water splitting,” Chemical Society Reviews, Volume 38, Issue 1,
      Pages 253-278, 2009
    [19] Y. Lare, A. Godoy, L. Cattin, K. Jondo, T. Abachi, F.R. Diaz, M.  
      Morsli, K. Napo, M.A. del Valle, and J.C. Berne, “ZnO thin films
      fabricated by chemical bath deposition, used as buffer layer in
      organic solar cells,” Applied Surface Science, volume 255, Issues
      13-14, Pages 6615–6619, 2009
    [20] L. H. Lin, C. C. Wu, C. H. Lai, and T. C. Lee, “Controlled
      deposition of silver indium sulfide ternary semiconductor thin
      films by chemical bath deposition,” Chemistry of Materials,
      Volume 20, Issue 13, Pages 4475-4483
    [21] J. M. Doña, and J. Herrero, “Process and film characterization of
      chemical-bath-deposited ZnS thin films,” Journal of the
      Electrochemical Society, Volume 141, Number 1, Pages 205-210,
      1994
    [22] R. Sahraei, G. Motedayen Aval, A. Baghizadeh, M. Lamehi-Rachti,  
      A. Goudarzi, and M. H. Majles Ara, “Investigation of the effect of
      temperature on growth mechanism of nanocrystalline ZnS thin
      films,” Materials Letters, Volume 62, Issue 28, Pages 4345-4347,
      2008
    [23] T. Ben Nasr, N. Kamoun, M. Kanzari, and R. Bennaceur, “Effect of
      pH on the properties of ZnS thin films grown by chemical bath
      deposition,” Thin Solid Films, Volume 500, Issues 1-2, Pages4-8,
      2006
    [24] L.V. Makhova, I. Konovalov, R. Szargan, N. Aschkenov ,M.
      Schubert, and T. Chassé, “Composition and properties of ZnS thin 
      films prepared by chemical bath deposition from acidic and basic
      solutions,” Physica Status Solidi C, Volume 2, Issue 3, Pages 1206-
      1211, 2005
    [25] A. F. Qasrawi, and N. M. Gasanly,” Crystal data, electrical
      resistivity, and hall mobility of n-type AgIn5S8 single crystals,”
      Crystal Research and Technology, Volume 36, Issues 4-5, Pages
      457-464, 2001
    [26] A. Aquilera, M. L., Aquilar Hernandez, J., Orteqa-Lopez, M.,
      Sanchez, V. M., Gonzalez Trujillo, M. A., “Some physical 
      properties of chalcopyrite and orthorhombic AgInS2 thin films
      prepared by spray pyrolysis,” Materials Science and Engineering: B,
      Volume 102, Issues 1-3, Pages 380-384, 2003
    [27] Y. Akaki, S. Kurihara, M. Shirahama, K. Tsurugida, S. Seto, T.
      Kakeno, and K. Yoshino, “Structural, electrical and optical
      properties of AgInS2 thin films grown by thermal evaporation
      method,” Journal of Physics and Chemistry of Solids, Volume 66,
      Issue 11, Pages 1858-1861, 2005
    [28] J. Q. Hu, B. Deng, K. B. Tang, C. R. Wang, and Y. T. Qian,
      “Preparation and phase control of nanocrystalline silver indium
      sulfides via a hydrothermal route,” Journal of materials research,
      Volume 16, number 12, Pages 3411-3415, 2001
    [29] T. C. Deivaraj, J. H. Pard, M. Afzaal, P. O’Brien, and J.
      Vittal,“ Single-source precursors to ternary silver indium sulfide
      materials,” Chemical Communications, Volume 22, Issue 22, Pages
      2304-2305, 2001
    [30] A. Kudo, R. Niishiro, A. Iwase, and H. Kato, “Effects of doping of
      metal cations on morphology, activity, and visible light response of
      photocatalysts,” Chemical Physics, Volume 339, Issues 1-3, Pages
      104-110, 2007
    [31] H. Meherzi-Maghraoui, M. Dachraoui, S. Belgacem, K. D. Buhre,
      R. Kunst, P. Cowache, and D. Lincot, “Structural, optical and
      transport properties of Ag2S films deposited chemically from
      aqueous solution,” Thin Solid Films, Volume 288, Issues 1-2, Pages
      217-223, 1996
    [32] C. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, K. Diesner, M. 
      Muller, and H. Tributsch, “Chemical bath deposition of indium
      sulphide thin films: preparation and characterization,” Thin Solid
      Films, Volume 340, Issues 1-2, Pages 18-23, 1999
    [33] P. O’Brien, and J. McAleese. "Developing an understanding of the
      processes controlling the chemical bath deposition of ZnS and CdS,”
      Journal of the Materials chemistry, Volume 8, Issue 11, Pages 2309
      -2314, 1998
    [34] H. Y. Xu, H. Wang, T. N. Jin, and H. Yan, “Rapid fabrication of
      luminescent Eu:YVO4 films by microwave-assisted chemical                  
      solution deposition,” Nanotechnology, Volume 16, Number 1, Pages
      65-69, 2005
    [35] http://xrayweb.chem.ou.edu/images/bragg.gif
    [36] R. Zhai, S. Wang, H. Y. Xu, H. Wang, and H. Yan, “Rapid
      formation of CdS, ZnS thin films by microwave-assisted chemical
      bath deposition,” Materials Letters, Volume 59, Issue 12, Pages
      1497-2501, 2005
    Advisor
  • Lih-Wu Hourng(洪勵吾)
  • Files
  • 963208016.pdf
  • approve immediately
    Date of Submission 2009-07-13

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.