Title page for 963204004


[Back to Results | New Search]

Student Number 963204004
Author Zhen-hao Guo(郭鎮豪)
Author's Email Address kenny7395@hotmail.com
Statistics This thesis had been viewed 1906 times. Download 697 times.
Department Chemical and Materials Engineering
Year 2008
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Fabrication and Properties of Anodic Aluminum Oxide Templates and Co-Ni Alloy Nanowires
Date of Defense 2009-07-22
Page Count 81
Keyword
  • AAO
  • alloy nanowire
  • electrodeposition
  • Abstract In this study, the AAO template with large-area nanopores structure and the large-scale well-aligned pure Ni, Co, and Co-Ni alloy nanowires arrays with different composition ratio of Co and Ni were successfully fabricated under controlled processing conditions. The average pore size of the AAO template produced was about 25 nm. On the other hand, pure Ni, Co, and Co-Ni alloy nanowires with different concentration ratios of Co to Ni (Co:Ni=1:9, Co:Ni=1:1, Co:Ni=9:1) were successfully synthesized by DC electrodeposition into nanopores of commercial AAO template. Based on the TEM and SAED analyses, it is found that the Ni and Co nanowires were polycrystalline with FCC and HCP structures, respectively. In addition, the three sets of Co-Ni alloy nanowires were all single crystalline, and these single crystalline Co-Ni nanowire possess a HCP structure. The average diameter of the metal and alloy nanowires was about 250 nm. From the EDS line-scan profiles analysis, it is revealed that alloy nanowires were entirely composed of Co and Ni, and uniform distributions of Co and Ni throughout these nanowires. The growth direction of the Co-Ni alloy nanowires of samples A (Co:Ni=1:9), B (Co:Ni=1:1), and C (Co:Ni=9:1) were identified to be along the[-6241], [-3211], and [02-21] directions, respectively.
    From electrical property measurement, the addition of Co to Ni could strongly affect the resistivity of Co-Ni alloy nanowires. The resistivity of Co-Ni nanowire was found to increase with the addition of Co to Ni first then decrease. The results are discussed in the context of the Nordheim’s rule. On the other hand, the Co-Ni nanowires were found to be very sensitive to the externally applied magnetic field. In this study, experimental result demonstrated that by applying external magnetic fields, these Co-Ni nanowires can be controlled to align along the directions of applied magnetic filed and assemble into a 2D ordered pattern on Si substrate.
    Table of Content 目錄I
    第一章 簡介1
    1-1 前言1
    1-2 多孔性陽極氧化鋁模板2
    1-3 金屬奈米線之製備6
    1-4 合金金屬奈米線8
    1-5 金屬奈米線之導電性質9
    1-6 研究動機10
    第二章 實驗步驟12
    2-1 多孔性陽極氧化鋁模板之製備12
    2-1-1 市售陽極氧化鋁模板12
    2-1-2 自製陽極氧化鋁模板12
    2-2 電化學沉積金屬奈米線14
    2-2-1 電鍍溶液的配製14
    2-2-2 電鍍製程14
    2-2-3 純鎳、鈷及其合金金屬奈米線15
    2-3 純鎳、鈷金屬及鎳-鈷合金奈米線電性量測分析15
    2-4 分析儀器與鑑定16
    2-4-1 掃描式電子顯微鏡16
    2-4-2 穿透式電子顯微鏡17
    2-4-3 高分辨穿透式電子顯微鏡與X 光能量散佈光譜儀17
    2-4-4 電性量測分析儀17
    第三章 結果與討論18
    3-1 多孔性陽極氧化鋁模板18
    3-1-1 市售陽極氧化鋁模板18
    3-1-2 自製陽極氧化鋁模板19
    3-2 純鎳、鈷金屬及其合金金屬奈米線21
    3-2-1 純鎳、鈷金屬奈米線陣列21
    3-2-2 鎳-鈷合金奈米線陣列23
    3-3 純鎳、鈷金屬及鎳-鈷合金金屬奈米線電性量測分析25
    3-4 鎳鈷合金奈米線之磁性排列30
    第四章 結論與未來展望31
    4-1 結論31
    4-2 未來展望32
    4-2-1 小尺寸孔徑之奈米線陣列及其性質研究32
    4-2-2 不同形狀結構之奈米線及其他奈米結構研究32
    參考文獻33
    表目錄43
    圖目錄45
    Reference [1]P. W. Chiu, and C. H. Chen, “High-Performance Carbon Nanotube Network Transistors for Logic Applications,” Appl. Phys. Lett. 92 (2008) 063511 1-3.
    [2]C. J. Lin, Y. T. Lu, C. H. Hsieh, and S. H. Chien, “Surface Modification of Highly Ordered TiO2 Nanotube Arrays for Efficient Photoelectrocatalytic Water Splitting,” Appl. Phys. Lett. 94 (2009) 113102 1-3.
    [3]P. Liu, G. G. She, Z. L. Liao, Y. Wang, Z. Z. Wang, W. S. Shi, X. H. Zhang, S. T. Lee, and D. M. Chen, “Observation of Persistent Photoconductance in Single ZnO Nanotube,” Appl. Phys. Lett. 94 (2009) 063120 1-3.
    [4]S. P. Cho, Y. Nakamura, M. Ichikawa, and N. Tanaka, “High Resolution Transmission Electron Microscopy Study of Iron-Silicide Nanodot Structures Grown on Faintly Oxidized Si (111) Surfaces,” Thin Solid Films 517 (2009) 2865-2870.
    [5]S. F. Fu, S. M. Wang, L. Lee, C. Y. Chen, W. C. Tsai, W. C. Chou, M. C. Lee, W. H. Chang, and W. K. Chen, “The Structural and Optical Properties of InN Nanodots Grown with Various V/III Ratios by Metal-Organic Chemical Vapor Deposition,” Nanotechnology 20 (2009) 295702 1-4.
    [6]K. S. Lin, Z. P. Wang, S. Chowdhury, and A. K. Adhikari, “Preparation and Characterization of Aligned Iron Nanorod Using Aqueous Chemical Method,” Thin Solid Films 517 (2009) 5192-5196.
    [7]X. G. Hu, T. Wang, and S. J. Dong, “Thermal Annealing of Au Nanorod Self-Assembled Nanostructured Materials : Morphology and Optical Properties,” J. Colloid Interface Sci. 316 (2007) 947-953.
    [8]M. H. Yang, F. L. Qu, Y. J. Li, Y. He, G. L. Shen, and R. Q. Yu, “Direct Electrochemistry of Hemoglobin in Gold Nanowire Array,” Biosens. Bioelectron. 23 (2007) 414-420.
    [9]J. Wan, S. R. Deng, R. Yang, Z. Shu, B. R. Lu, S. Q. Xie, Y. F. Chen, E. Huq, R. Liu, and X. P. Qu, “Silicon Nanowire Sensor for Gas Detection Fabricated by Nanoimprint on SU8/SiO2/PMMA Trilayer,” Microelectron. Eng. 86 (2009) 1238-1242.
    [10]M. H. Chou, S. B. Liu, C. Y. Huang, S. Y. Wu, and C. L. Cheng, “Confocal Raman Spectroscopic Mapping Studies on a Single CuO Nanowire,” Appl. Surf. Sci. 254 (2008) 7539-7543.
    [11]J. J. Yuan, Q. Zhao, Y. S. Xu, Z. G. Liu, X. B. Dub, and G. H. Wen, “Synthesis and Magnetic Properties of Spinel CoFe2O4 Nanowire Arrays,” J. Magn. Magn. Mater. 321 (2009) 2795-2798.
    [12]S. H. Lee, N. Saito, and O. Takai, “Highly Reproducible Technique for Three-Dimensional Nanostructure Fabrication Via Anodization Scanning Probe Lithography,” Appl. Surf. Sci. 255 (2009) 7302-7306.
    [13]B. Päivänranta, M. Pudas, O. Pitkänen, K. Leinonen, M. Kuittinen, P. Y. Baroni, T. Scharf, and H. P. Herzig, “Liquid Phase Deposition of Polymers on Arbitrary Shaped Surfaces and Their Suitability for E-Beam Patterning,” Nanotechnology 20 (2009) 225305 1-6.
    [14]S. Regonda, M. Aryal, and W. Hu, “Stability of HSQ Nanolines Defined by E-Beam Lithography for Si Nanowire Field Effect Transistors,” J. Vac. Sci. Technol., B 26 (2008) 2247-2251.
    [15]S. Thongmee, H. L. Pang, J. Ding, and J. Y. Lin, “Fabrication and Magnetic Properties of Metallic Nanowires Via AAO Templates,” J. Magn. Magn. Mater. 321 (2009) 2712-2716.
    [16]X. H. Tan, “Fabrication and Properties of Sr2MgSi2O7 : Eu2+,Dy3+ Nanostructures by an AAO Template Assisted Co-Deposition Method,” J. Alloys Compd. 477 (2009) 648-651.
    [17]F. Wang, H. B. Huang, and S. G. Yang, “Synthesis of Ceramic Nanotubes Using AAO Templates,” J. Eur. Ceram. Soc. 29 (2009) 1387-1391.
    [18]B. K. Lee, K. J. Cha, and T. H. Kwon, “Fabrication of Polymer Micro/Nano-Hybrid Lens Array by Microstructured Anodic Aluminum Oxide (AAO) Mold,” Microelectron. Eng. 86 (2009) 857-860.
    [19]W. M. Zhou, J. Zhang, X. L. Li, Y. B. Liu, G. Q. Min, Z. T. Song, and J. P. Zhang, “Replication of Mold for UV-Nanoimprint Lithography Using AAO Membrane,” Appl. Surf. Sci. 255 (2009) 8019-8022.
    [20]S. J. Parka, M. S. Chob, J. D. Nama, I. H. Kima, H. R. Choic, J.C. Kooc, and Y. Lee, “The Linear Stretching Actuation Behavior of Polypyrrole Nanorod in AAO Template,” Sens. Actuators, B 135 (2009) 592-596.
    [21]K. L. Yu, T. G. Luo, Y. G. Zhang, C. M. Yang, L. J. Shang, C. Li, and Q. F. Li, “Carbon Nanotube Synthesis Over Glow Discharge-Treated Ni/AAO Membrane,” Mater. Lett. 63 (2009) 566-568.
    [22]J. Duan, J. Liu, T. W. Cornelius, H. Yao, D. Mo, Y. Chen, L. Zhang, Y. Sun, M. Hou, C. Trautmann, and R. Neumann, “Magnetic and Optical Properties of Cobalt Nanowires Fabricated in Polycarbonate Ion-Track Templates,” Nucl. Instr. and Meth. B (2009).
    [23]N. Sertova, E. Balanzat, M. Toulemonde, and C. Trautmann, “Investigation of Initial Stage of Chemical Etching of Ion Tracks in Polycarbonate,” Nucl. Instr. and Meth. B 267 (2009) 1039-1044.
    [24]A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous Silicon : A Two-Dimensional Photonic Bandgap Material Suitable for the Near-Infrared Spectral Range,” Phys. Stat. Sol. A 165 (1998) 111-117.
    [25]J. L. Zhang and G. Y. Hong, “Synthesis and Photoluminescence of the Y2O3 : Eu3+ Phosphor Nanowires in AAO Template,” J. Solid State Chem. 177 (2004) 1292-1296.
    [26]Z. B. Fang, Y. Y. Wang, X. P. Peng, X. Q. Liu, and C. M. Zhen, “Structural and Optical Properties of ZnO Films Grown on the AAO Templates,” Mater. Lett. 57 (2003) 4187-4190.
    [27]L. Liu, Y. M. Zhao, N. Q. Jia, Q. Zhou, C. J. Zhao, M. M. Yan, and Z. Y. Jiang, “Electrochemical Fabrication and Electronic Behavior of Polypyrrole Nano-Fiber Array Devices,” Thin Solid Films 503 (2006) 241-245.
    [28]D. C. Yang, G. W. Meng, F. M. Han, and L. D. Zhang, “Two-Segment CdS/Bi Nanowire Heterojunctions Arrays and Their Electronic Transport Properties,” Mater. Lett. 62 (2008) 3213-3216.
    [29]C. L. Xu, H. Li, G. Y. Zhao, and H. L. Li, “Electrodeposition of Ferromagnetic Nanowire Arrays on AAO/Ti/Si Substrate for Ultrahigh-Density Magnetic Storage Devices,” Mater. Lett. 60 (2006) 2335-2338.
    [30]R. L. Wang, S. L. Tang, B. Nie, X. L. Fei, Y. G. Shi, and Y. W. Du, “Fabrication and Magnetic Properties of Ordered Fe60Pb40 Nanowire Arrays Electrodeposited in AAO Templates,” Solid State Commun. 142 (2007) 639-642.
    [31]O. Jessensky, F. Müller, and U. Gösele, “Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,” Appl. Phys. Lett. 72 (1998) 1173-1175.
    [32]G. E. Thompson, “Porous Anodic Alumina : Fabrication, Characterization and Applications,” Thin Solid Films 297 (1997) 192-201.
    [33]H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina,” Science 268 (1995) 1466-1468.
    [34]Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm Period Silicon Antireflection Structures Fabricated Using a Porous Alumina Membrane Mask,” Appl. Phys. Lett. 78 (2001) 142-143.
    [35]F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,” Chem. Mater. 10 (1998) 2470-2480.
    [36]H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly Ordered Nanochannel-Array Architecture in Anodic Alumina,” Appl. Phys. Lett. 71 (1997) 2770-2772.
    [37]W. Lee, R. Ji, C. A. Ross, U. Gösele, and K. Nielsch, “Wafer-Scale Ni Imprint Stamps for Porous Alumina Membranes Based on Interference Lithography,” Small 2 (2006) 978-982.
    [38]H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, “Self-Repair of Ordered Pattern of Nanometer Dimensions Based on Self-Compensation Properties of Anodic Porous Alumina,” Appl. Phys. Lett. 78 (2001) 826-828.
    [39]H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina,” Adv. Mater. 13 (2001) 189-192.
    [40]C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered Anodic Alumina Nanochannels on Focused-Ion-Beam-Prepatterned Aluminum Surfaces,” Appl. Phys. Lett. 78 (2001) 120-122.
    [41]N. W. Liu, A. Datta, C. Y. Liu, and Y. L. Wang, “High-Speed Focused-Ion-Beam Patterning for Guiding the Growth of Anodic Alumina Nanochannel Arrays,” Appl. Phys. Lett. 82 (2003) 1281-1283.
    [42]R. Krishnan, H. Q Nguyen, C. V Thompson, W. K Choi, and Y. L Foo, “Wafer-Level Ordered Arrays of Aligned Carbon Nanotubes with Controlled Size and Spacing on Silicon,” Nanotechnology 16 (2005) 841-845.
    [43]A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina,” J. Appl. Phys. 84 (1998) 6023-6026.
    [44]S. K. Hwang, J. Lee, S. H. Jeong, P. S. Lee, and K. H. Lee, “Fabrication of Carbon Nanotube Emitters in an Anodic Aluminium Oxide Nanotemplate on a Si Wafer by Multi-Step Anodization,” Nanotechnology 16 (2005) 850-858.
    [45]S. Mathur, S. Barth, U. Werner, F. H. Ramirez, and A. R. Rodriguez, “Chemical Vapor Growth of One-Dimensional Magnetite Nanostructures,” Adv. Mater. 20 (2008) 1550-1554.
    [46]S. N. Cha, B. G. Song, J. E. Jang, J. E. Jung, I. T. Han, J. H. Ha, J. P. Hong, D. J. Kang, and J. M. Kim, “Controlled Growth of Vertically Aligned ZnO Nanowires with Different Crystal Orientation of the ZnO Seed Layer,” Nanotechnology 19 (2008) 235601 1-4.
    [47]L. H. Wang, X. Z Zhang, S. Q. Zhao, G. Y. Zhou, Y. L. Zhou, and J. J. Qi, “Synthesis of Well-Aligned ZnO Nanowires by Simple Physical Vapor Deposition on C-Oriented ZnO Thin Films Without Catalysts or Additives,” Appl. Phys. Lett. 86 (2005) 024108.
    [48]Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-Emitting ZnO Nanowires Synthesized by a Physical Vapor Deposition Approach,” Appl. Phys. Lett. 78 (2001) 407-409.
    [49]M. Yu, J. H. Liu, and S. M. Li, “Preparation and Characterization of Highly Ordered NiO Nanowire Arrays by Sol-Gel Template Method,” J. Univ. Sci. Technol. Beijing 13 (2006) 169-173.
    [50]C. H. Bae, S. M. Park, S. E. Ahn, D. J. Oh, G. T. Kim, and J. S. Ha, “Sol–Gel Synthesis of Sub-50 nm ZnO Nanowires on Pulse Laser Deposited ZnO Thin Films,” Appl. Surf. Sci. 253 (2006) 1758-1761.
    [51]X. Y. Ma, H. Zhang, J. Xu, J. J. Niu, Q. Yang, J. Sha, and D. Yang, “Synthesis of La1-xCaxMnO3 Nanowires by a Sol–Gel Process,” Chem. Phys. Lett. 363 (2002) 579-582.
    [52]L. H. Zhang, Y. Fang, and P. X. Zhang, “Laser-MBE of Nickel Nanowires Using AAO Template : A New Active Substrate of Surface Enhanced Raman Scattering, ” Spectrochim. Acta, Part A 69 (2008) 91-95.
    [53]Q. T. Wang, “Electrochemical Template Synthesis of Large-Scale Uniform Copper Selenides Nanowire Arrays,” Mater. Lett. 63 (2009) 1493-1495.
    [54]G. B. Yue, G. W. Meng, Q. L. Xu, B. S. Chen, and M. Fang, “Manipulation of Crystalline Orientation and Optical Absorption of Cu Nanowire Arrays Embedded in Anodic Aluminum Oxide Templates,” Mater. Lett. 63 (2009) 998-1000.
    [55]W. C. Tsai, S. J. Wang, J. K. Lin, C. L. Chang, and R. M. Ko, “Preparation of Vertically-Aligned Nickel Nanowires with Anodic Aluminum Oxide Templates and Their Application as Field Emitters,” Electrochem. Commun. 11 (2009) 660-663.
    [56]X. Y. Sun, F. Q. Xu, Z. M. Li, and W. H. Zhang, “Cyclic Voltammetry for the Fabrication of High Dense Silver Nanowire Arrays with the Assistance of AAO Template,” Mater. Chem. Phys. 90 (2005) 69-72.
    [57]H. Araki, A. Fukuoka, Y. Sakamoto, S. Inagaki, N. Sugimoto, Y. Fukushima, and M. Ichikawa, “Template Synthesis and Characterization of Gold Nano-Wires and -Particles in Mesoporous Channels of FSM-16,” J. Mol. Catal. A: Chem. 199 (2003) 95-102.
    [58]X. Y. Yuana, T. Xiea, G. S. Wua, Y. Lina, G. W. Menga, and L. D. Zhang, “Fabrication of Ni-W-P Nanowire Arrays by Electroless Deposition and Magnetic Studies,” Physica E 23 (2004) 75-80.
    [59]C. L. Xua, S. J. Baoa, L. B. Kongb, H. Lia, and H. L. Li, “Highly Ordered MnO2 Nanowire Array Thin Films on Ti/Si Substrate as an Electrode for Electrochemical Capacitor,” J. Solid State Chem. 179 (2006) 1351-1355.
    [60]Y. Ding, P. Zhang, Z. Long, Y. Jiang, J. Yin, F. Xu, and Y. Zuo, “The Elastic Module of Ag Nanowires Prepared from Electrochemical Deposition,” J. Alloys Compd. 474 (2009) 223-225.
    [61]W. B. Yang, Z. Wu, Z. Y. Lu, X. P. Yang, and L. X. Song, “Template-Electrodeposition Preparation and Structural Properties of CdS Nanowire Arrays,” Microelectron. Eng. 83 (2006) 1971-1974.
    [62]S. Thongmee, H. L. Pang, J. B. Yi, J. Ding, J. Y. Lin, and L. H. Van, “Unique Nanostructures in NiCo Alloy Nanowires,” Acta Mater. 57 (2009) 2482-2487.
    [63]M. Motoyama, Y. Fukunaka, T. Sakka, and Y. H. Ogata, “Initial Stages of Electrodeposition of Metal Nanowires in Nanoporous Templates,” Electrochim. Acta 53 (2007) 205-212.
    [64]Y. Zhong, C. L. Xu, L. B. Kong, and H. L. Li, “Synthesis and High Catalytic Properties of Mesoporous Pt Nanowire Array by Novel Conjunct Template Method,” Appl. Surf. Sci. 255 (2008) 3388-3393.
    [65]X. Z. Gong, J. N. Tang, J. Q. Li, and Y. K. Liang, “Preparation and Characterization of La-Co Alloy Nanowire Arrays by Electrodeposition in AAO Template under Nonaqueous System,” Trans. Nonferrous Met. Soc. China 18 (2008) 642-647.
    [66]J. H. Jeong, S. H. Kim, J. H. Min, Y. K. Kim, and S. S. Kim, “High-Frequency Noise Absorbing Properties of Nickel Nanowire Arrays Prepared by DC Electrodeposition,” Phys. Stat. Sol. A 204 (2007) 4025-4028.
    [67]J. H. Min, J. H. Wu, J. U. Cho, J. H. Lee, Y. D. Ko, H. L. Liu, J. S. Chung, and Y. K. Kim, “Electrochemical Preparation of Co3Pt Nanowires,” Phys. Stat. Sol. A 204 (2007) 4158-4161.
    [68]J. X. Xu and Y. Xu, “Fabrication and Magnetic Property of Binary Co-Ni Nanowire Array by Alternating Current Electrodeposition,” Appl. Surf. Sci. 253 (2007) 7203-7206.
    [69]A. Ramazani, M. A. Kashi, M. Alikhani, and S. Erfanifam, “Fabrication of High Aspect Ratio Co Nanowires with Controlled Magnetization Direction Using AC and Pulse Electrodeposition,” Mater. Chem. Phys. 112 (2008) 285-289.
    [70]J. X. Xu and Y. Xu, “Fabrication of Amorphous Co and Co-P Nanometer Array with Different Shapes in Alumina Template by AC Electrodeposition,” Mater. Lett. 60 (2006) 2069-2072.
    [71]K. Nielsch, F. Müller, A. P. Li, and U. Gösele, “Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition,” Adv. Mater. 12 (2000) 582-586.
    [72]K. G. Kim, M. J. Kim, and S. M. Cho, “Pulsed Electrodeposition of Palladium Nanowire Arrays Using AAO Template,” Mater. Chem. Phys. 96 (2006) 278-282.
    [73]J. X. Xu and K. Y. Wang, “Pulsed Electrodeposition of Monocrystalline Ni Nanowire Array and its Magnetic Properties,” Appl. Surf. Sci. 254 (2008) 6623-6627.
    [74]G. E. Possin, “A Method for Forming Very Small Diameter Wires,” Rev. Sci. Instrum. 41 (1970) 772-774.
    [75]E. Yue, G. Yu, Y. J. Ouyang, B. C. Weng, W. W. Si, and L. Y. Ye, “Electrochemical Fabrication of Pd-Ag Alloy Nanowire Arrays in Anodic Alumina Oxide Template,” J. Mater. Sci. Technol. 24 (2008) 850-856.
    [76]A. Saedi and M. Ghorbani, “Electrodeposition of Ni-Fe-Co Alloy Nanowire in Modified AAO Template,” Mater. Chem. Phys. 91 (2005) 417-423.
    [77]S. L. Cheng and C. N. Huang, “Template Synthesis of Large-Scale Single-Crystalline Co-Ni Alloy Nanowire Arrays by Electrochemicl Deposition,” Synth. React. Inorg. Met.-Org. Chem. 38 (2008) 475-480.
    [78]J. Zhu, “Composition-Dependent Plasmon Shift in Au-Ag Alloy Nanotubes :Effect of Local Field Distribution,” J. Phys. Chem. C 113 (2009) 3164-3167.
    [79]G. B. Ji, J. M. Cao, F. Zhang, G. Y. Xu, S. L. Tang, B. X. Gu, and Y. W. Du, “Fabrication and Magnetic Properties of Ternary Alloy Co-Ni-Pb Nanowire Arrays,” Chem. Lett. 34 (2005) 808-809.
    [80]J. L Mozos, C. C. Wan, G. Taraschi, J. Wang, and H. Guo, “Quantized conductance of Si atomic wires,” Phys. Rev. B: Condens. Matter 56 (1997) R4351-R4354.
    [81]H. Okino, I. Matsuda, R. Hobara, Y. Hosomura, S. Hasegawa, and P. A. Bennett, “In situ Resistance Measurements of Epitaxial Cobalt Silicide Nanowires on Si (110) ,” Appl. Phys. Lett. 86 (2005) 233108 1-3.
    [82]H. Q. Cao, L. D. Wang, Y. Qiu, and L. Zhang, “Synthesis and I-V Properties of Aligned Copper Nanowires,” Nanotechnology 17 (2006) 1736-1739.
    [83]K. Biswas, Y. Qin, M. DaSilva, R. Reifenberger, and T. Sands, “Electrical Properties of Individual Gold Nanowires Arrayed in a Porous Anodic Alumina Template,” Phys. Stat. Sol. A 204 (2007) 3152-3158.
    [84]M. Tanase, D. M. Silevitch, A. Hultgren, L. A. Bauer, P. C. Searson, G. J. Meyer, and D. H. Reich, “Magnetic trapping and Self-Assembly of Multicomponent Nanowires,” J. Appl. Phys. 91 (2002) 8549-8551.
    [85]C. Thelander, T. Mårtensson, M. T. Björk, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-Electron Transistors in Heterostructure Nanowires,” Appl. Phys. Lett. 83 (2003) 2052-2054.
    [86]C. M. Hangarter, and N. V. Myung, “Magnetic Alignment of Nanowires,” Chem. Mater. 17 (2005) 1320-1324.
    [87]G. S. Cheng, A. Kolmakov, Y. X. Zhang, M. Moskovits, R. Munden, M. A. Reed, G. M Wang, D. Moses, and J. P. Zhang, “Current Rectification in a Single GaN Nanowire with a Well-Defined p-n Junction,” Appl. Phys. Lett. 83 (2003) 1578-1580.
    [88]M. E. T. Molares, E. M. Höhberger, Ch. Schaeflein, R. H. Blick, R. Neumann, and C. Trautmann, “Electrical Characterization of Electrochemically Grown Single Copper Nanowires,” Appl. Phys. Lett. 82 (2002) 2139-2141.
    [89]B. Yoo, Y. Rheem, W. P Beyermann, and N. V Myung, “Magnetically Assembled 30 nm Diameter Nickel Nanowire with Ferromagnetic Electrodes,” Nanotechnology 17 (2006) 2512-2517.
    [90]J. Jorritsma, and J. A. Mydosh, “Temperature-Dependent Magnetic Anisotropy in Ni Nanowires,” J. Appl. Phys. 84 (1998) 901-906.
    Advisor
  • Shao-liang Cheng(鄭紹良)
  • Files
  • 963204004.pdf
  • approve in 3 years
    Date of Submission 2009-07-30

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.