Title page for 963203035


[Back to Results | New Search]

Student Number 963203035
Author Yao-Kuang Yang(楊曜光)
Author's Email Address No Public.
Statistics This thesis had been viewed 954 times. Download 10 times.
Department Mechanical Engineering
Year 2008
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title A Study on Magnetic Field Assisted Micro Electro-Chemical Milling
Date of Defense 2009-06-26
Page Count 87
Keyword
  • 3D micro structures
  • helical tool
  • magnetic field-assisted
  • micro channel
  • micro electrochemical milling
  • Abstract The study presents micro channels and 3D micro structures are milled by using magnetic field-assisted electrochemical method. The study includes two major parts. The first part is electrochemical micro milling by using a helical tool. The shape accuracy of the micro groove machined by using the helical tool and cylindrical tool is compared. The results reveal that smaller groove width and depth expanding can be obtained by using a helical tool according to various parameters. Although the machining accuracy can be improved by using the helical tool, the feed rate still is not easily to rise.
    The second part is magnetic field-assisted micro electrochemical milling to overcome the above issue. The effect of the Lorentz force is applied in the process. According to the experimental result, the feed rate can be increased to 8 μm/sec during the magnetic field-assisted micro electrochemical milling. Furthermore, the groove width and groove depth are reduced to 344 μm and 98 μm respectively. The surface roughness also is reduced from Ra 1.6μm (Rmax 6.5μm) to Ra 0.36μm, (Rmax 4.47μm). The better parameters are also used in magnetic field-assisted electrochemical milling for micro channel and 3D micro structures machining. The study shows that the magnetic field-assisted approach indeed can improve the machining efficiency, accuracy and surface roughness.
    Table of Content 中文摘要i
    英文摘要ii
    誌 謝iii
    目 錄iv
    圖目錄vii
    表目錄x
    第一章 緒論1
    1-1 研究背景1
    1-2 研究動機與目的3
    1-3 文獻回顧5
    1-4 研究方法7
    第二章 實驗基礎原理8
    2-1 電化學加工的基礎理論8
    2-1-1 電化學反應機制8
    2-1-2 法拉第定律10
    2-1-3 電極電位-金屬與溶液界面雙電層理論11
    2-1-4 陽極極化曲線及其特徵12
    2-2 磁場理論13
    2-2-1 右手開掌定則13
    2-2-2 勞倫茲力14
    2-3 線放電研磨加工原理15
    第三章 微電化學銑槽加工特性之研究19
    3-1 實驗簡介19
    3-2 實驗設備19
    3-3 實驗材料27
    3-4 實驗流程與方法31
    3-5 結果與討論35
    3-5-1 螺旋電極與圓柱電極之微電化學銑槽加工結果之差異35
    3-5-2 螺旋電極實行於微電化學銑槽加工之參數影響探討38
    3-5-2-1 工作電壓對槽寬及槽深精度之影響38
    3-5-2-2 電極轉速對槽寬及槽深精度之影響39
    3-5-2-3 電解液濃度對槽寬及槽深精度之影響40
    3-5-2-4 脈衝時間對槽寬及槽深精度之影響41
    3-5-2-5 Y軸進給速度對槽寬及槽深精度之影響42
    3-6 結論45
    第四章 磁場輔助微電化學加工之研究46
    4-1 實驗簡介46
    4-2 實驗設備47
    4-3 實驗材料50
    4-4 實驗流程與方法52
    4-5 實驗架設與參數設定53
    4-6 結果與討論56
    4-6-1 磁場輔助下工作電壓對槽寬及槽深精度之影響56
    4-6-2 磁場輔助下磁鐵距離對槽寬及槽深精度之影響58
    4-6-3 磁場輔助下Y軸進給速度對槽寬及槽深精度之影響59
    4-7 磁場輔助下電化學銑削微流道之較佳單因子參數63
    4-8 幾何形狀微流道圖形與3D微結構圖形64
    4-9 結論67
    第五章 總結論68
    未來研究方向69
    參考文獻70
    個人簡歷73
    Reference [1]J. F. Wilson, Practice and Theory of Electrochemical Machining, Wiley-interscience, pp.4-7, 1971.
    [2]B. Bhattacharyya, M. Malapati, J. Munda, “Experimental study on electrochemical micromachining”, Journal of Materials Processing Technology, Vol.169, pp.485-492, 2005.
    [3]K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu1, R. Resnick, A. DeSilva, “Micro and Nano Machining by Electro- Physical and Chemical Processes”, Annals of the CIRP, Vol.55, pp.643-666, 2006.
    [4]R. Schuster, V. Kirchner, P. Allongue, G. Ertl, “Electrochemical micromachining”, Science, Vol.289, pp.98-101, 2000.
    [5]J. Kozak, K. P. Rajurkar, Y. Makkar, “Selected problems of micro-electrochemical machining”, Journal of Materials Processing Technology, Vol.149, pp426-431, 2004.
    [6]S.H. Ahn, S.H. Ryu, D.K. Choi, C.N. Chu, “Electrochemical micro drilling using ultra short pulses”, Precision Engineering, Vol.28, pp.129-134, 2004.
    [7]T. Kurita, K. Chikamori, S. Kubota, M. Hattori, “A study of three-dimensional shape machining with an ECμM system”, International Journal of Machine Tools & Manufacture, Vol.46, pp.1311-1318, 2006.
    [8]K. Chikamori, “Possibilities of electrochemical micromachining”, International Journal of the Japan Society for Precision Engineering, Vol.32, pp37-38, 1998.
    [9]Hattori, “Electrochemical machining under orbital motion conditions”, Journal of Materials Processing Technology, Vol.109, pp339-346, 2001.
    [10]B. Bhattacharyya, J. Munda, “Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain, International Journal of Machine Tools & Manufacture, Vol.43, pp1301-1310, 2003.
    [11]B. Bhattacharyya, J. Munda, M. Malapati, “Advancement in electrochemical micro-machining”, International Journal of Machine Tools & Manufacture, Vol.44, pp1577-1589, 2004.
    [12]T. Kurita, M. Hattori, “Development of new-concept desk top size machine tool”, International Journal of Machine Tools & Manufacture, Vol.45, pp959-965, 2005.
    [13]B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi, C. N. Chu, “Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid”, Vol.54, pp191-194, 2005.
    [14]M. Sen, H.S. Shan, “A review of electrochemical macro- to micro-hole drilling processes”, International Journal of Machine Tools & Manufacture, Vol.45, pp.137-152, 2005.
    [15]X. Lu, Y. Leng, “Electrochemical micromachining of titanium surfaces for biomedical applications”, Journal of Materials Processing Technology, Vol.169, pp.173-178, 2005.
    [16]B. J. Park, B. H. Kim, C. N. Chu, “The Effect of Tool Electrode Size on Characteristics of Micro Electrochemical Machining”, Annals of CIRP, Vol.55, 2006.
    [17]B. Bhattacharyya, M. Malapati, J. Munda, A. Sarkar, “Influence of tool vibration on machining performance in electrochemical micro-machining of copper”, International Journal of Machine Tools & Manufacture, Vol.47, pp.335-342, 2007.
    [18]J. Munda, M. Malapati, B. Bhattacharyya, “Control of micro-spark and stray-current effect during EMM process”, Journal of Materials Processing Technology, Vol.194, pp151-158, 2007.
    [19]W. Natsu, T. Ikeda, M. Kunieda, “Generating complicated surface with electrolyte jet machining”, Precision Engineering, Vol.31, pp33-39, 2007.
    [20]M. S. Park, C. N. Chu, “Micro-electrochemical machining using multiple tool electrodes”, Journal of Micromechanics And Microengineering, Vol.17, pp.1451-1457, 2007.
    [21]L. Staemmler, K. Hofmann, H. Kuck, “Hybrid tooling by a combination of high speed cutting and electrochemical milling with ultrashort voltage pulses”, Microsyst Technol, Vol.14, pp.249-254, 2008.
    [22]Z. Fan, T. Wang, L. Zhong “The mechanism of improving machining accuracy of ECM by magnetic field”, Journal of Materials Processing Technology, Vol.149, pp.409-413, 2004.
    [23]J. Fang, Z. Jin, et al., “ECM polishing research of assistant magneticfield Chin”, Surf. Eng. 15 (3), Vol.32, pp.24-26, 2002.
    [24]H. P. Tsui, J. C. Hung, J. C. You, B. H. Yan, “Improvement of Electrochemical micro drilling accuracy using helical tool”, International Journal of Machine & Manufacture processes, Vol.5, pp.499-505, 2008.
    [25]朱樹敏,電化學加工技術,化學工業出版社,2006。
    [26]崔海平,電化學結合電泳精密拋光不袗基材加工研究,國立中央大學機械工程系,博士論文,2008。
    [27]尤俊欽,結合電化學與電泳沉積之微孔複合加工研究,國立中央大學機械工程系,碩士論文,2008。
    [28]許玉山,硼矽玻璃的磁場輔助電化學放電加工技術研究,國立中央大學機械工程系,碩士論文,2008。
    [29]陳抗生,電磁場與電磁波,新文京開發,2006。
    [30]王薔、李國定、龔克,電磁場理論基礎,五南,2003。
    Advisor
  • Bing-Hua Yan(顏炳華)
  • Files
  • 963203035.pdf
  • disapprove authorization
    Date of Submission 2009-07-27

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.