Title page for 963203030


[Back to Results | New Search]

Student Number 963203030
Author Hong-Zen Ke(柯閎仁)
Author's Email Address No Public.
Statistics This thesis had been viewed 1262 times. Download 1353 times.
Department Mechanical Engineering
Year 2008
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Development of hot-melt adhesive pad and study of silicon wafer grinding effect
Date of Defense 2009-06-26
Page Count 84
Keyword
  • hot-melt adhesive
  • pad
  • SiC
  • silicon wafer
  • subsurface damaged layer
  • surface roughness
  • Abstract During the silicon wafer manufacture procedure , after slicing and edge contouring , silicon wafer surface results in saw mark and damaged layer and affects the following manufacture procedure . This research tries to combine new hot-melt adhesive pad with free SiC slurry to grind silicon wafer which makes silicon wafer surface quality smooth and reduces subsurface damaged layer. 
    In hot-melt adhesive pad aspect , the pad is made from thermosetting plastic materials(Ethylene-Vinyl Acetate) . Manufacture procedure of the hot-melt adhesive pad is to use hot-melt adhesive spray machine to heat hot-melt adhesive materials which become molten state and then use spray gun of 0.5 mm aperture to form hot-melt adhesive fiber by the high-pressured method and finally spread SiC particles(#8000) on hot-melt adhesive fiber ; the advantage of hot-melt adhesive pad , moreover , the cost of hot-melt adhesive material is cheap and it’s elastic characteristic can cushion action force between pad and silicon sample ; finally , we can select the best pad to grind silicon sample by analyzing the hot-melt adhesive pad characteristic , and we find that hot-melt adhesive pad exist a suitable hot-melt adhesive layer to let pad sustain complete shape.The experiment parameters include feed rate , load , grinding speed , SiC concentration , grinding cycle , then use precision instrument (SEM , AFM , TEM , Raman) to examine silicon sample surface and analyze subsurface microscopic structure after grinding silicon sample . In silicon wafer surface quality and subsurface damaged layer aspect , according to the experimental result , when feed rate 0.5 mm/sec , load 50 g , grinding speed 8000 rpm , SiC concentration 15% , grinding cycle 3 times , surface roughness can be improved from Ra : 41.91 nm to Ra : 2.45 nm , and then subsurface damaged layer can be improved to about 150 nm , finally the silicon sample surface exists amorphous layer by using raman spectral analysis and computes it’s thickness about 10 nm .
    Table of Content 目錄
    摘要i
    致謝iv
    目錄v
    圖目錄viii
    表目錄xi
    一、緒論1
    1-1 研究背景1
    1-2 研究動機與目的3
    1-3 文獻回顧4
    二、實驗原理5
    2-1 矽晶圓特性介紹5
    2-2 機械刮除機制+化學鍵結反應機制8
    2-2-1 機械刮除機制8
    2-2-2化學鍵結反應機制10
    三、實驗設備、材料與流程11
    3-1 實驗相關設備11
    3-1-1 CNC雕刻機11
    3-1-2 精密電子天平11
    3-1-3 去離子水系統12
    3-1-4 電磁加熱攪拌器12
    3-1-5 pH測量計13
    3-1-6 超音波洗淨機13
    3-1-7 熱熔膠塗佈機14
    3-1-8 場發射掃描式電子顯微鏡14
    3-1-9 原子力顯微鏡15
    3-1-10 場發射穿透式電子顯微鏡15
    3-1-11 分散式拉曼光譜儀16
    3-1-12 CCD(Charge Coupled Device)量測系統16
    3-2實驗材料17
    3-2-1工件材料17
    3-2-2 研磨輪材料19
    3-2-3 熱熔膠材料20
    3-2-4 磨粒材料21
    3-2-5 催化劑22
    3-2-6 膠狀瞬間膠22
    3-3 實驗流程與步驟23
    3-3-1 熱熔膠研磨墊製作流程24
    3-3-2 熱熔膠研磨墊特性分析27
    3-3-3 實驗架設與參數設定27
    3-3-4 結果與討論29
    四、結果與討論30
    4-1 熱熔膠研磨墊分析30
    4-1-1 孔隙密度30
    4-1-2 壓縮性31
    4-1-3 磨料吸附性33
    4-1-4 損耗分析34
    4-1-5 研磨墊的選擇36
    4-2 研磨矽晶片實驗參數探討37
    4-2-1 不同進給速率對表面粗糙度、加工移除量的影響37
    4-2-2 不同研磨荷重對表面粗糙度、加工移除量的影響39
    4-2-3 不同磨輪轉速對表面粗糙度、加工移除量的影響45
    4-2-4 不同磨料濃度對表面粗糙度、加工移除量的影響50
    4-2-5 不同研磨道次對表面粗糙度、加工移除量的影響54
    4-2-6 最佳實驗參數60
    4-3 次表面損傷層TEM分析60
    4-4 次表面損傷層拉曼分析64
    五、結論67
    六、參考文獻68
    圖目錄
    圖2-1 矽的原子結構圖6
    圖2-2 立方晶體的3D模型6
    圖2-3 最易滑移方向示意圖7
    圖2-4 溫度與熱膨脹係數關係圖7
    圖2-5 Hertzian Model 微觀去除模型9
    圖2-6 Fluid-Based Model 微觀去除模型9
    圖3-1 CNC雕刻機11
    圖3-2 精密電子天平11
    圖3-3 去離子水系統12
    圖3-4 電磁加熱攪拌器12
    圖3-5 pH測量計13
    圖3-6 超音波洗淨機13
    圖3-7 熱熔膠塗佈機14
    圖3-8場發射掃描式電子顯微鏡14
    圖3-9原子力顯微鏡15
    圖3-10場發射穿透式電子顯微鏡15
    圖3-11分散式拉曼光譜儀16
    圖3-12 CCD(Charge Coupled Device)量測系統16
    圖3-13 矽晶片工件尺寸圖17
    圖3-14 矽晶片晶背表面SEM圖18
    圖3-15 矽晶片晶背表面AFM圖18
    圖3-16 研磨輪尺寸圖20
    圖3-17 熱熔膠(EVA)粒子20
    圖3-18 實驗流程圖23
    圖3-19 熱熔膠研磨墊製作流程25
    圖3-20 塗佈距離示意圖26
    圖3-21 噴嘴頭示意圖26
    圖3-22 自動進給研磨路徑27
    圖3-23 研磨實驗架設裝置28
    圖4-1不同塗佈距離下研磨墊孔隙密度的變化31
    圖4-2 量測壓縮性設備32
    圖4-3 不同塗佈距離下研磨墊的壓縮性變化33
    圖4-4 不同塗佈距離下研磨墊磨料吸附性變化34
    圖4-5 不同塗佈距離下研磨墊加工後的損耗情形36
    圖4-7 不同進給速率下矽晶片的SEM圖38
    圖4-8 不同進給速率對加工移除量的影響39
    圖4-9 不同研磨荷重對表面粗糙度的影響40
    圖4-11 不同研磨荷重下矽晶片的AFM圖44
    圖4-12 不同研磨荷重對加工移除量的影響44
    圖4-13 不同磨輪轉速對表面粗糙度的影響45
    圖4-14 不同磨輪轉速下研磨墊磨耗情形47
    圖4-15 不同磨輪轉速下矽晶片的AFM圖49
    圖4-16 不同磨輪轉速對加工移除量的影響49
    圖4-17 不同磨料濃度對表面粗糙度的影響51
    圖4-18 不同磨料濃度下矽晶片的AFM圖53
    圖4-19 不同磨料濃度對加工移除量的影響53
    圖4-20 不同研磨道次對表面粗糙度的影響55
    圖4-21 不同研磨道次下研磨墊磨耗情形56
    圖4-22 不同研磨道次下矽晶片的AFM 圖59
    圖4-23 不同研磨道次對加工移除量的影響59
    圖4-24 最佳參數下表面粗糙度改善效果60
    圖4-25 最佳實驗參數的次表面損傷層62
    圖4-26 最大進給速率下的次表面損傷層62
    圖4-27 最大研磨荷重下的次表面損傷層63
    圖4-28 最大磨輪轉速下的次表面損傷層63
    圖4-29 最大進給速率10 mm/sec與最佳參數拉曼光譜訊號強度區域局部放64
    圖4-30 最大研磨轉速14000 rpm與最佳參數拉曼光譜訊號強度區域局部放65
    圖4-31 最大研磨荷重450 g與最佳參數拉曼光譜訊號強度區域局部放大分65
    圖4-32 拉曼強度比對非晶質層厚度圖66
    表目錄
    表2-1 室溫下矽的破裂韌性7
    表2-2 研磨模式9
    表3-1 矽的機械性質17
    表3-2 不鏽鋼的物理與機械性質19
    表3-3 熱熔膠的材料性質21
    表3-4 碳化矽磨粒材料特性21
    表3-5 氫氧化鈉的性質22
    表3-6 熱熔膠研磨墊製程參數25
    表3-7 矽晶片研磨實驗參數設定28
    Reference 1. 林明獻,矽晶圓半導體材料技術,全華科技圖書股份有限公司,6-49~6-50頁,ISBN:957-21-2745-4。89年3月再版。
    2. 土肥俊郎等著,王建榮,林必窈,林慶福等編譯,半導體平坦化CMP技術,全華科技圖書股份有限公司,89年6月再版。
    3. W. T. Tseng, L. C. Kang, J. H. Chin, P. Y. Cheng, “Distribution of pressure and its effects on the removal rate during chemical mechanical polishing process”, CMP-MIC conference, California, USA, 1998, pp.87.
    4. J. Grillaert, Marc Meuris, Nancy Heylen, Katia Devriendt, Evi Vrancken, “Modelling step height reduction and local removable rates based on pad-substrate interactions,” CMP-MIC conference, California, USA, 1998, pp.79.
    5. D. R. Evans, M. R. Oliver and M. K. Ingram, “SEPARATION OF PAD AND SLURRY EFFECTS IN COPPER CMP,” Rodel, Inc. 2000.
    6. F. Shimura, Semiconductor Silicon Crystal Technology. San Diego: Academic Press, 1989.
    7. C. Chen, and M. Leipold, “Fracture Toughness of Silicon.” American Ceramic Society Bulletin. v 59, n 4, 1980, pp. 469-472.
    8. P. B. Hirsch, “脆性-延性遷移の基礎”日本学会会报. v29, n1, 1990 , pp.5.
    9. T. C. Wu, N. Morita, and Y. Yoshida, “Study on Grinding of Single Crystalline Silicon(2nd report, The Effect of Temperature and Load Rate on Brittle-Ductile Transition).” 日本機械学会論文集(C編)58 卷555号, 1992-11.
    10. C. A. Swenson , J. Phys. Chem. Ref. Data 12 , 1983 , p.179-182.
    11. L. M. Cook, Pro. SRC Topical Research Conference on Chem-
    Mechanical Polishing for Planarization, SRC, Research Triangle Park,
    NC (1992), Proc., vol. # p92008.
    12. L. M. Cook, J. Non-cryst. Solids, 120, 152 (1990).
    13. 林明智, “化學機械研磨的微觀機制探討” ,國立中央大學碩士論文,2000。
    14. J. Yan et al / Precision Engineering 32 (2008) 186-195.
    15. A. Richard Baker, “The origin of the edge effect in chemical mechanical planarization”, ECS 1996 Fall meeting, San Antonio, TX, USA, Oct., 1996, pp.1.
    16. S. Malkin and T. W. Hwang, “Grinding Mechanisms for Ceramics,” Annals of the CIRP, v 45, 1996, pp.569-580.
    17. T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile Regime Grinding : A New Technology for Machining Brittle Materials,” Journal of Engineering for Industry, Transactions of the ASME, v113, 1991, pp.184-189.
    18. Yan J, Asami T, Kuriyagawa T / Precision Engineering 32 (2008) 186-195.
    19. Zhang Yinxia, Kang Renke, Guo Dongming, and Jin Zhuji, Rare metals. Vol 26. No.1, 2007, p 13.
    Advisor
  • Fuang-Yuan Huang(黃豐元)
  • Files
  • 963203030.pdf
  • approve in 3 years
    Date of Submission 2009-07-27

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.