Title page for 963202021


[Back to Results | New Search]

Student Number 963202021
Author Pao-Shuan Kwan(鄺柏軒)
Author's Email Address 963202021@cc.ncu.edu.tw
Statistics This thesis had been viewed 791 times. Download 184 times.
Department Civil Engineering
Year 2009
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Shear stress-strain relationship of sandy soil deposit using dynamic centrifuge modeling test
Date of Defense 2010-07-30
Page Count 190
Keyword
  • Centrifuge Modeling Test
  • Liquefaction
  • Shaking Table
  • Shear modulus
  • Abstract The relationship of shear stress and shear strain of sandy soil is an important parameter and need to determination when soil stiffness and strength degraded as a result of sand liquefaction. Centrifuge modeling tests can provide an alternative source of information and reliable test results for assessing soil mechanism under shaking situation. The centrifuge model was conducted to simulate the seismic response for a 24m thick sandy soil deposit under an artificial gravity field of 80g. The testing models are subjected to different magnitude base-input acceleration of 1Hz and 16 seconds duration. A series of accelerometer and pore water pressure transducer arrays were installed to record the soil seismic response.
    Utilizing the acceleration history and the pore pressure history, the shear stress and shear strain at different depths can be obtained. And then the shear modulus can be acquired through calculation. From this research, the phenomenon of shear wave propagating upward is obviously being seen in dry sand, so is the site effect. The soil dilatation and surge can be found in saturated sand.
    Table of Content 目錄
    摘要I
    AbstractII
    誌謝III
    目錄V
    表目錄X
    圖目錄XII
    符號說明XVIII
    第一章 導論1
    1-1 研究動機及目的1
    1-2 研究架構2
    1-3 論文內容2
    第二章 文獻回顧4
    2-1 土壤的動態特性4
    2-2 土壤剪力模數的影響因素5
    2-3 小剪應變的剪力模數7
    2-3-1 圍壓對剪力模數的影響7
    2-3-2 孔隙比對剪力模數的影響8
    2-3-3 剪應變振幅對動態性質的影響8
    2-4 利用感測器陣列分析受振行為10
    2-5 振動台試驗箱分類13
    2-5-1 固壁式試驗箱(rigid box)13
    2-5-2 等效剪力樑試驗箱(equivalent shear- beam container)13
    2-5-3 積層式剪力試驗箱(laminar box)14
    2-6 離心模型基本原理14
    2-6-1 離心模型試驗的尺度效應15
    2-6-2 離心模型的基本相似律16
    2-6-3 離心模型試驗之模型模擬20
    2-7 地盤放大效應22
    第三章 試驗土樣、試驗設備及試驗方法33
    3-1 試驗規劃33
    3-2 試驗土樣與其基本性質33
    3-3 試驗儀器及相關設備34
    3-3-1 地工離心機34
    3-3-2 單軸向振動台35
    3-3-3 資料擷取系統36
    3-3-4 積層式剪力試驗箱(laminar box)及橡皮袋。36
    3-3-5 大型移動式霣降設備37
    3-3-6 其他量測工具38
    3-4 模型製作及試體準備39
    3-4-1 試驗箱之組立39
    3-4-2 試體製作39
    3-5 試驗方法與步驟41
    3-6  資料處理42
    第四章 試驗結果與分析61
    4.1  試驗之重複性62
    4.1.1 試驗重複性差異參數62
    4.1.2 振動台輸入振動的穩定性63
    4.1.3 試體製作的重複性64
    4.2 乾砂的受振反應66
    4.2.1 D2-R40-E1的受振反應66
    4.2.2 D2-R40-E2的受振反應68
    4.2.3 D3-R50-E1的受振反應69
    4.2.4 D3-R60-E2 的受振反應70
    4.2.5 相對密度對於乾砂試體的影響71
    4.2.6 基盤加速度對於試體的影響72
    4.3 飽和砂土的受振反應73
    4.3.1 W1-R40-E1的受振反應73
    4.3.2 W1-R70-E2的受振反應76
    4.3.3 W2-R50-E1的受振反應77
    4.3.4 W2-R60-E2的受振反應78
    4.3.5 液化後再受振79
    4.3.6 受振未液化之再受振試驗80
    4.4 最大剪力模數、剪力模數比與剪應變曲線81
    4.4.1 最大剪力模數的評估方法81
    4.4.2 乾砂的剪應變與剪力模數關係82
    4.5 乾砂受振時影響剪力模數的因素83
    4.5.1 乾砂試體的剪應變以及剪力模數比的關係84
    4.5.2 乾砂試體的剪力模數比與週期數的關係84
    4.6 飽和試體的受振行為分析85
    4.6.1 飽和試體的剪力模數比與剪應變關係85
    4.6.2 剪力模數與超額孔隙水壓比的關係86
    4.6.3 剪力模數與有效圍壓的關係87
    第五章 結論與建議172
    5.1 結論172
    5.2 建議173
    Reference 參考文獻
    [1].Zeghal, M., Elgamal, A.W., Zeng, X., and Arulmoli,K., “Mechanism of liquefaction response in sand-silt dynamic centrifuge tests,” Soil Dynamicand Earthquake Engineering, Vol. 15, issue 8, pp.71-85 (1999).
    [2].Zeghal, M., Elgamal, A.W., “Analysis of Site Liquefaction Using Earthquake Records,” Journal of Geotechnical Engineering, Vol. 120, No. 6, pp.996-1017(1994)
    [3].Zeghal, M., Elgamal, A.W., Tang, H.T., and Stepp, J.C., “Lotung Downgole Array. II: Evaluation of Soil Nonlinear Properties,” Journal of Geotechnical Engineering, Vol. 121, No. 4, pp.363-376(1993)
    [4].Sharp, M.K., Dobry, R., Zeng, X., and Abdoun ,A.M., “Liquefaction centrifuge modeling of sands of different permeability,” Journal of Geotechnicaland Geoenvironmental Engineering, Vol. 129, No.12, pp. 1083-1091 (2003).
    [5].Jahromi, H.F., Jafarzadeh, F., and Torghabeh, E.A., “Dynamic parameters of dry sand using one dimensional shaking table tests,” Proceedings of the Sixth International Conference on Physical Modelling in Geotechnics, Hong Kong, pp.279-283(2006)
    [6].Sharp, M.K., Dobry, R., Zeng, X., and Abdoun ,A.M., “Liquefaction centrifuge modeling of sands of different permeability,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No.12, pp. 1083-1091 (2003).
    [7].Chen, H.T., C.J. Lee, and Chen, W.H., “The traveling pluviation appartus for sand specimen preparation,” Proceedings of the International Conference Centrifuge 98, Tokyo, pp.143-148 (1998) .
    [8].Hardin, B.O., and Drnevich V. P., “Shear Modulus and Damping in Soils:Measurement and Parameter Effects,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, pp. 603-624 (1972a).
    [9].Hardin, B.O. and Drenvich, V.P., “Shear Modulus and Damping in Soils: Design Equations and Curves”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp. 667-692 (1972b).
    [10].Hardin, B.O., and Black W.L., “Vibration Modulus of Normally Consolidated Clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM2, pp. 353-369 (1968).
    [11].Seed, H.B., and Idriss I.M., “Shear Moduli and Damping Factor for Dynamic Response Analysis,” Report No. EERC 70-10, Earthquake Engineering Research Center, Univ. of California, Berkeley, California (1970).
    [12].Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K., “Moduli and Damping Factors for Dynamic Analysis of Cohesionless Soils,” Journal of Geotechnical Engineering, ASCE, Vol. 112, No. GT11, pp. 1016∼1032 (1986).
    [13].Brennan, A.J., Thusyanthan, N.I., and Madabhushi, S.P.G., “Evaluation of Shear Modulus and Damping in Dynamic Centrifuge Tests,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 12, pp. 1488-1497(2005).
    [14].Laak, P. A. V., Taboada, V. M., Dobry, R. and Elgamal, A. W., “Earthquake Centrifuge Modelling UsingDynamic geotechnical testing II, pp. 370-384.
    [15].Acutronic, Civil Engineering Centrifuge Model 665-1 Installation Manual 5941E, France(1992)
    [16].Acutronic, Geotechnical Centrifuge Model 665-1 Product Description 5933H, France(1993)
    [17].Chen, H.T., C.J. Lee, and Chen, W.H., “The travel- ing pluviation appartus for sand specimen preparation,” Proceedings of the International Conference Centrifuge 98, Tokyo, pp.143-148 (1998) .
    [18].Ko, H.Y., and Daewoolkar, M.M., “Modelling Liquefaction in Centrifuge,” Physics and Mechanics of Soil Liquefaction, pp. 307-322(1999)
    [19].PVL Technologies, Inc.,Model LB-2814 Laminar Box Model Container for Geotechnical Centrifuge Model Testing(2008)
    [20].J. Yang, J.B. Li, G. Lin, “A Simple Approach to Integration of Acceleration Data for Dynamic Soil-Structure Interaction Analysis,” Soil Dynamic and Earthquake Engineering, vol. 26, issue 8, pp. 725-734(2006).
    [21].吳偉特,「土壤動力特性在大地工程之應用」,地工技術雜誌,第二期,第82∼96 頁 (1983)。
    [22].吳偉特,「土壤動力學與大地工程」,地工技術雜誌,第九期,第5∼19 頁 (1985)。
    [23].李崇正,林志棟,林俊雄,「大地工程研究者知新工具:離心模型試驗」,岩盤工程研討會論文集,中壢,第649-669 頁(1994)。
    [24].魏雨辰,洪汶宜,鄺柏軒,郭玉潔,江國輝,李崇正,「以離心模型試驗模擬均質砂土層之受振反應」,第十三屆大地工程研討會暨國科會成果發表會,宜蘭,台灣(2009)。
    [25].王金山,「共振柱之土壤動力性質」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
    [26].陳思宏,「黏土層中未襯砌隧道之破壞機制」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
    [27].郭玉潔,「探討積層板試驗箱進行動態離心模型試驗之邊界效應」,碩士論文,國立中央大學土木工程學系,中壢(2009)
    [28].程漢瑋,「振動台大型剪力盒試驗砂土液化後沉陷量之研究」,碩士論文,國立台灣大學土木工程學系,台北(2004)
    [29].陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,博士論文,國立中央大學土木工程學系,中壢 (1999)。
    Advisor
  • Chung-Jung Lee(李崇正)
  • Files
  • 963202021.pdf
  • approve immediately
    Date of Submission 2010-08-27

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.