Title page for 962402603


[Back to Results | New Search]

Student Number 962402603
Author Sunil Kumar(dN)
Author's Email Address karna_sk2000@yahoo.com
Statistics This thesis had been viewed 970 times. Download 347 times.
Department Physics
Year 2010
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language English
Title Spin, Charge and Lattice Couplings in Layered Oxychalcogenide BiOCuX (X= S, Se) Compounds Studied by Neutron Diffraction
Date of Defense 2011-06-27
Page Count 141
Keyword
  • Magnetic structure
  • Neutron diffraction
  • Oxychalcogenides
  • Abstract The electrical and magnetic properties of slightly Cu-deficient BiOCu0.94S are investigated using neutron diffraction, ac magnetic susceptibility, magnetization and electric resistivity measurements. The sample BiOCu0.94S crystallizes into a tetragonal P4/nmm symmetry with cell parameters of a=b=3.8645(1) Å and c=8.5493(3) Å at 293 K. Tetragonal BiOCu0.94S consists of BiO and CuS layers that are interconnected through weak ionic bindings. The Cu spins order with a ferromagnetic arrangement below TC =250 K. An antiferromagnetic component develops below 180 K when the crystalline unit cell experiences a sharp thermal contraction upon cooling, resulting in a canted ferromagnetic spin arrangement at low temperatures with saturated magnetic moment <gZ> = 0.61gB. In the magnetically ordered state the electrical transport can be described by three-dimensional (3D) variable range hopping conduction. An applied magnetic field can effectively reduce the hopping barrier. Spin-charge couplings are clearly revealed as the resistivity departs from the hopping conduction to become increases with increasing temperature, when the Cu spins become disordered above 250 K.
       The crystalline and magnetic structures of tetragonal BiOCu0.98Se are also studied. The ferromagnetic ordering of Cu spins develops below TC = 300K. An antiferromagnetic component develops below 260 K when the crystalline unit cell experiences negative thermal expansion upon cooling resulting in a canted ferromagnetic spin arrangement for the Cu spins at low temperatures with a saturated magnetic moment <gZ> = 0.5gB. These observations clearly reveal the appearance of interplay between lattice and magnetic structures, which is rarely seen and the mechanism behind is certainly interesting.
    Table of Content Table of Contents
    Abstract in EnglishKKKKKKKKi
    Abstract in ChineseKKKKKKKKii
    DedicationKKKKKKKKKKKKiii
    AcknowledgementsKKKKKKKKKiv
    Table of ContentsKKKKKKKKKvi
    List of FiguresKKKKKKKKKKx
    List of TablesKKKKKKKKKKxiv
    Chapter 1 Introduction KKKKKKKKKK1
     1.1 Scientific BackgroundKKKKKKKK1
     1.2 Structure and physical properties of RFeAsO KKK2
      1.2.1 Crystalline structure KKKKKKKKK3
      1.2.2 Structural transition KKKKKKKK4
      1.2.3 Phase diagram KKKKKKKKKK..5
      1.2.4 Magnetic structure KKKKKKKKKKKKK6
      1.2.5 Electrical and magnetic properties KKKKK7
     1.3 Some properties of BiOCuX (X = S or Se)KKKKK9
      References KKKKKKKKKKKKKKKKKKKK11
    Chapter 2 Experimental Methods KKKKKKKKKKKK13
     2.1 Sample preparation KKKKKKKKKKKKKKK13
     2.2 Sample characterization KKKKKKKKKKKKK13
        2.2.1 X-ray diffraction KKKKKKKKKKKK13
        2.2.2 Energy-dispersive x-ray spectroscopy KKK15
        2.2.3 Neutron diffraction measurements KKKK17
     2.3 Magnetic measurements KKKKKKKKKKKK19
     2.4 Transport measurements KKKKKKKKKKK21
       2.4.1 Overview of resistivity option KKKKKK21
       2.4.2 Resistivity measurements KKKKKKKK23
      References KKKKKKKKKKKKKKKKKKKK25
    Chapter 3 Theoretical Backgrounds KKKKKKKK26
      3.1 AC magnetic susceptibility KKKKKKK26
      3.2 Magnetic properties of Materials KKKKKKK28
         3.2.1 Spin (magnetic) order KKKKKK30
    3.2.1.1Behavior of a substance in a magnetic field K30
            3.2.1.2 Types of magnetic orderKKK33
            3.2.1.3 Exchange mechanismsKKKK34
            3.2.2 Langevin theory of paramagnetism K36
         3.2.3 Brillouin function KKKKKKK38
      3.3 Hopping conduction KKKKKKKKKK42
         3.3.1 Nearest-neighbor hopping KKKKKKK42
         3.3.2 Variable range hopping KKKKKKKK42
      3.4 Magnetoresistance KKKKKKKKK45
      3.5 Theory of diffraction KKKKKKKKK45
         3.5.1 Powder diffraction KKKKKKK48
     3.6 X-ray diffraction KKKKKKKKK49
      3.7 Neutron diffraction KKKKKKKKKKK50
         3.7.1 Nuclear neutron diffraction KKKKKK53
         3.7.2 Magnetic neutron diffraction KKKKK54
      3.8 The Reitveld method KKKKKKKKKKK58
      References KKKKKKKKKKKKKKKKK64
    Chapter 4 Spin, charge and lattice couplings in Cu-deficient BiOCu0.94S KK66
      4.1 Crystalline structure KKKKKKK66
      4.2 Trends of structural parameters with temperatureK71
       4.2.1 Thermal variation of lattice parameters K71
       4.2.2 Thermal variations of bond lengths and bond  angles KKKKKKK73
       4.2.3 Thermal variations of bond valance sum (BVS)K75
     4.3 Magnetic properties KKKKKKKKKKKK77
        4.3.1 AC susceptibility, hysteresis loops and thermal variations of magnetization..77
        4.3.2 Variations of magnetization with applied magnetic field KKKKKKK....80
     4.4 Transport properties KKKKKKKKKKK82
      4.4.1 Thermal variations of electrical resistivity K82
      4.4.2 Thermal variations of magnetoresistance KK84
        4.4.3 Field dependence of magnetoresistance KK86
     4.5 Results of neutron diffraction KKKKKK87
        4.5.1 Order parameters KKKKKKKKKKK87
        4.5.2 Magnetic structure KKKKKKKKKK90
        4-5-3 Possible mechanisms KKKKKKKK91
     4.6 Thermal variations of superexchange integral KKK93
     4.7 ConclusionsKKKKKKKKKKKK94
     References KKKKKKKKKKKKKKKKK96
    Chapter 5 Spin, charge and lattice couplings in Cu-deficient BiOCu0.98SeKK.....98
     5.1 Introduction...KKKKKKKKKKKKK98
     5.2 Sample fabrication and crystalline structure KKK98
     5.3 Thermal variation of lattice parameters KKK104
     5.4 Thermal variations of structural parameters KKK106
     5.5 Magnetic properties KKKKKKKKKKK108
        5.5.1 AC susceptibility and thermal variations of magnetizationKKK108
        5.5.2 Variations of magnetization with applied magnetic field KKKKKKK.110
     5.6 Transport properties KKKKKKKKK.112
        5.6.1 Thermal variations of resistivity KKK112
        5.6.1 Thermal variations of magnetoresistance K114
     5.7 Results of neutron diffraction KKKKKKK115
        5.7.1 Order parameters KKKKKKKKKKK115
        5.7.2 Magnetic structure KKKKKKKKKK117
     5.8 Thermal variations of superexchange integralKKK118
     5.9 Conclusions KKKKKKKKKKK119
     References KKKKKK.120
     VitaKKKKKKKKKK...122
    Reference Chapter 1
    References
    1Y. Kamihara, T. Watanabe, M. Hirano & H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
    2X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen and D. F. Fang, Nature (London) 453, 761 (2008).
    3G. F. Chen, Z. Li, G. Li, J. Zhou, D. Wu, J. Dong, W. Z. Hu, P. Zheng, Z. J. Chen, H. Q. Yuan, J. Singleton, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 101, 057007 (2008).
    4G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 100, 247002 (2008).
    5Z.-A. Ren, G.-C. Che, X.-L. Dong, J. Yang, W. Lu, W. Yi, X. -L. Shen, Z.-C. Li, L.-L. Sun, F. Zhou and Z.-X Zhao, Europhys. Lett. 83, 17002 (2008).
    6P. Quebe, L. J. Terbüchte, and W. Jeitschko: J. Alloys Compd. 302, 70 (2000).
    7N. Qureshi, Y. Drees, J. Werner, S. Wurmehl, C. Hess, R. Klingeler, B. Büchner, M. T. Fernández-Díaz, and M. Braden, Phys. Rev. B 82, 144521 (2010).
    8J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang. Preprint at http://arxiv.org/abs/0803.3426v1 (2008).
    9C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature (London) 453, 899 (2008).
    10S. Margadonna, Y. Takabayashi, M. T. McDonald, M. Brunelli, G. Wu, R. H. Liu, X. H. Chen, and K. Prassides, arXiv:0806.3962.
    11Q. Huang, J. Zhao, J. W. Lynn, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Phys. Rev. B 78, 054529 (2008).
    12Chao Cao, P. J. Hirschfeld,1 and Hai-Ping Cheng, Phys. Rev. B 77, 220506 (2008).
    13F. J. Ma & Z. Y. Lu, Phys. Rev. B 78, 033111 (2008).
    14H.-H. Klauss, H. Luetkens, R. Klingeler, C. Hess, F. J. Litterst, M. Kraken, M. M. Korshunov, I. Eremin, S.-L. Drechsler, R. Khasanov, A. Amato, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, Phys. Rev. Lett. 101 077005 (2008).
    15H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, Chem. Mater. 20, 326 (2008).
    16A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V.A. Dolgikh and  B. A. Popovkin, J. solid state chemistry 112, 189-191 (1994).
    17W. J. Zhu, Y. Z. Huang, C. Dong, Z. X. Zhao, Mater. Res. Bull. 29, 143 (1994).
    18T. ohtani, Y. Tachibana, Y. Fujii, J. Alloys compd. 262-263, 175 (1997).
    19P.S. Berdonosov, A. M. Kusainova, L. N. Kholodkovskaya, V. A. Dolgikh, L.G. Akselrud, B. A. Popovkin, J. solid state chem. 118, 74 (1995).
    20I. R. Shein and A. L. Ivanovskii, Solid State Commun. 150, 640 (2010).
    21A. Ubaldini, E. Giannini, C. Senatore, D. van der Marel, Physica C 470, s356 (2010).
    22Anand Pal, H. Kishan, V.P.S. Awana, J. Supercond. Nov. Magn. 23, 301 (2010).
    23L. Ortenzi, S.Biermann, O. K. Andersen, I. I. Mazin, and L.Boeri, Phys. Rev B 83, 100505(R) (2011).
    Chapter 2
    References
    1Energy Dispersive X-ray Microanalysis Hardware Explained, Oxford Instruments Analytical Technical Briefing.
    2K.-D. Liss, B. Hunter, M. Hagen, T. Noakes, S. Kennedy, Physica B 385V386 1010 (2006)
    3http://www.qdusa.com/sitedocs/productBrochures/mag3-07.pdf
    4http://www.qdusa.com/sitedocs/productBrochures/16TPPMS7.pdf
    5http://www.mrl.ucsb.edu/mrl/centralfacilities/chemistry/resPPMS.pdf
    Chapter 3
    References
    1R. W. Rollins, H. Küpfer, and W. Gey, J. Appl. Phys. 45, 5392 (1974).
    2http://www.qdusa.com/sitedocs/appNotes/ppms/1078-201.pdf
    3S. Elliot, The physics and chemistry of solids; Wiley: Chichester, 1998.
    4E.O. Wollan and W.C. Koehler, Phys. Rev., 100, 545 (1955).
    5J.B. Goodenough, Phys. Rev., 117, 1442 (1960).
    6P.W. Anderson, Phys. Rev., 79, 350 (1950).
    7K. H. J. Buschow and F. R. de Boer, Physics of magnetism and magnetic materials (Kluwer Academic publishers, 2004) Chap. 4.
    8Kazuo Morigaki, Physics of Amorphous Semiconductors (World Scientific 1999) Chap. 7.
      9N. F. Mott and E. A. Davis, Electronic Processes in Non-CrystallineMaterials, 2th Ed., Chap. 2, (Clarendon press, Oxford, 1979).
      10W. Massa, Crystal structure determination; Springer-Verlag: Berlin, 2000.
    11G.E. Bacon: Neutron Diffraction, University of Sheffield, Oxford Press, 1975.
    12S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Vol. 1 (Clarendon press, Oxford, 1984).
    13G. L. Squires, Introduction of the Theory of Thermal Neutron Scattering (Cambridge University Press, Cambridge, 1978).
    14A. C. Larson and R. B. von Dreele, GSAS Manual, p134.
    15http://www.ncnr.nist.gov/instruments/bt1/neutron.html.
    16R.P.O. Y. A. Izyumov, Magnetic Neutron Diffraction; Plenum Press: New York, 1970.
    17H.M. Rietveld, Acta Cryst., 22, 151 (1967).
    18H.M. Rietveld, J. Appl. Cryst., 2, 65 (1969).
    19R.A. Young, The Rietveld Method; Oxford University Press: Oxford, 1995.
    20 A.C. Larson and R.B.V. Dreele, General Structureal Analysis System (GSAS); Los
    Alamos National Laboratory: Los Alamos, 1990.
    21 P. Thompson, D.E. Cox and J.B. Hastings, J. Appl. Cryst., 20, 79 (1987).
    22B. H. Toby, J. Appl. Cryst. 34, 210-213, (2001).
    Chapter 4
    References
    1A. C. Larson and R. B. Von Dreele, General Structure Analysis System, Report LA-UR-86-748; Los Alamos National Laboratory: Los Alamos, NM. 1990.
    2H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
    3I. R. Shein and A. L. Ivanovskii, Solid State Commun. 150, 640 (2010).
    4Anand Pal, H. Kishan, V.P.S. Awana, J. Supercond. Nov. Magn. 23, 301 (2010).
    5H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, Chem. Mater. 20, 326 (2008).
    6A. Ubaldini, E. Giannini, C. Senatore, D. van der Marel, Physica C 470, s356 (2010).
    7A. M. Kusianova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, A. V. Dolgikh, and B. A. Popovkin, J. Solid State Chem. 112, 189 (1994).
    8W. C. Sheets, E. S. Stampler, H. Kabbour, M. I. Bertoni, L. Cario, T. O. Mason, T. J. Marks, and K. R. Poeppelmeier, Inorg. Chem. 46, 10741 (2007).
    9C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature (London) 453, 899 (2008).
    10J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li,  Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nature Mater. 7, 953 (2008).
    11Q. Huang, J. Zhao, J. W. Lynn, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Phys. Rev. B 78, 054529 (2008).
    12J. Zhao, Q. Huang, C. de la Cruz, J. W. Lynn, M. D. Lumsden, Z. A. Ren, J. Yang, X. Shen, X. Dong, Z. Zhao, and P. Dai, Phys. Rev. B 78, 132504 (2008).
    13S. Margadonna, Y. Takabayashi, M. T. McDonald, K. Kasperkiewicz, Y. Mizuguchi, Y. Takano, A. N. Fitch, E. Suard, and K. Prassides, Chem. Commun. 2008, 5607 (2008).
    14F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008).
    15S. Li, C. de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, J. Hu, Y. L. Huang, F. C. Hsu, K. W. Yeh, M. K. Wu, and P. Dai, Phys. Rev. B 79, 054503 (2009).
    16C. L. Zhang, A. Ignatov, M. Vannucci, M. Croft, T. A. Tyson, D. Kwok, Z. Qin, S.-W. Cheong, preprint at <http://arxiv.org/abs/0808.2134 (2008).
    17I.D. Brown and D. Altermatt, Acta Cryst. B, 41, 244-247 (1985).
    18I.D. Brown, J. Chem. Edu.,77, 1070 (2000).
    19M. O'Keeffe and A. Navrotsky, Structure and bonding in crystals; Academic Press Inc.: New  York, 1981.
    20J. A. Alonso, M T Casais, M. J. Martínez-Lope, J. L. Martínez and M. T. Fernández-Díazz,
       J. Phys.: Condens. Matter 9, 8515V8526 (1997).
    21A. Salinas-Sanchez, J. L. Garcia-Monoz, J.Rodrigues-Carvajal, and R.Saez-Puche, J.Solid 
      State Chem. 100, 201-211 (1992).
    22For example, see A. Isihara, Condensed Matter Physics. (Oxford Univ. Press, NY, 1991), pp.157.
     23C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature (London) 453, 899 (2008).
    24J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li,  Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nature Mater. 7, 953 (2008).
    25I. I. Mazin, preprint at <http://arxiv.org/abs/1001.2332>
    26 L. E. Gontchar, A. E. Nikiforov, Phys. Rev. B. 66, 014437 (2002).
    27E. Gontchar, A. E. Nikiforov, S. E. Popov, J. Magn. Magn. Mater. 223, 175 (2001).
    28 J. Kanamori, J. Appl. Phys. 31, 14S (1960).
    Chapter 5
    References
    1Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
    2H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, Nature (London) 453, 376 (2008).
    3T. ohtani, Y. Tachibana, Y. Fujii, J. Alloys compd. 262-263, 175 (1997).
    4P.S. Berdonosov, A. M. Kusainova, L. N. Kholodkovskaya, V. A. Dolgikh, L.G. Akselrud, B. A. Popovkin, J. solid state chem. 118, 74 (1995).
    5H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, Chem. Mater. 20, 326 (2008).
    6L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart and N. Dragoe, Appl. Phys. Lett. 97, 092118 (2010).
    7A. C. Larson and R. B. Von Dreele, General Structure Analysis System, Report LA-UR-86-748; Los Alamos National Laboratory: Los Alamos, NM. 1990.
    8H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
    9A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V. A. Dolgikh and B. A. Popovkin, J. Solid state Chem.112, 189-191 (1994).
    10Evan S. Stampler, William C. Sheets, Mariana I. Bertoni, Wilfrid Prellier, Thomas O. Mason and Kenneth R. Poeppelmeier, Inorg. Chem. 47, 10009 (2008).
    11J.E. Orgel, J. Chem. Soc.1959, 3815 (1959).
    12F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 4th ed. (John Wiley: New York, 1980; p 327).
    13For example, see A. Isihara, Condensed Matter Physics. (Oxford Univ. Press, NY, 1991), pp.157.
    14 L. E. Gontchar, A. E. Nikiforov, Phys. Rev. B. 66, 014437 (2002).
    15E. Gontchar, A. E. Nikiforov, S. E. Popov, J. Magn. Magn. Mater. 223, 175 (2001).
    16J. Kanamori, J. Appl. Phys. 31, 14S (1960).
    Advisor
  • Wen-Hsien Li(献)
  • Files
  • 962402603.pdf
  • approve immediately
    Date of Submission 2011-07-13

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.