Title page for 962402002


[Back to Results | New Search]

Student Number 962402002
Author Chong-Wai Io(Q)
Author's Email Address waiio@hotmail.com
Statistics This thesis had been viewed 428 times. Download 10 times.
Department Physics
Year 2010
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language English
Title Experimental investigation of micro-motion and structure in 2+1D Chain-Bundle Dusty Plasma Liquids
Date of Defense 2011-03-18
Page Count 64
Keyword
  • 2+1D
  • Dusty plasma
  • micro-structure and motion
  • Abstract The microscopic liquid can be treated as a strongly coupled many-body system, which exhibits vast and complicated micro-dynamics. It has been a hot topic in the past decade. Nevertheless, the previous studies are mainly limited to the system with isotropic coupling. It is very interesting to extend the investigation to the liquid with anisotropic coupling. 2+1D liquids composed of bundles of flexible chains is one of the simplest examples, where the coupling along the chain direction is stronger than that in the transverse plane. Due to the lack of direct experimental observation, the micro-picture of 2+1D liquid remains elusive.
    The dusty plasma liquid formed by negatively charged dust particle suspended in low pressure gaseous discharges, where the dust particle interacts with each other through the Coulomb interaction, provides us a platform to mimic and understand the generic microscopic dynamical behaviors of liquids at the kinetic level because of the capability of direct visualization. The wake field of downward ion wind on particles at larger diameter (> 3 mum) provides extra vertical coupling and alignment, and induces the chain bundle structure. When the chain length is long (40 particle per chain), the chains are flexible. The 2+1D dusty plasma liquid is then formed.
    In this work, the micro-structure and motion in the cold 2+1D dusty plasma liquid were experimentally investigated through our stereo scanning dust tracking system. It is found that the horizontal structure and motion are similar to those of the 2D liquids. When the observation time is shorter than the relaxation time of the system, particles can exhibit collective motion, which is also associated with anomalous diffusion. Horizontally, the collective motion can be classified to the longitudinal and the transverse types. Along the vertical chain, under the suppression of the vertical flipping, only the transverse type collective motion is allowed. The cooperation of horizontal and vertical collective motion leads to the special collective stereo excitations, such as straight vertical chains with small amplitude wiggling, chain tilting-restraightening, bundle twisting-restraightening, and chain breaking-reconnection. The demonstration of the first direct visualization of those basic excitations was conducted in this work. In addition, horizontal micro-structure and the stereo collective excitations are found to be statistically correlated through the measurement of correlation probability.
    Table of Content 1 Introduction 1
    2 Background 5
    2.1 Introduction to the 2+1D liquid . . . . . . . . . . . . . . . . . 5
    2.2 Chain bundle dusty plasma liquids as a 2+1D liquid . . . . . . 7
    2.2.1 Dusty plasma and rf glow discharge . . . . . . . . . . . 7
    2.2.2 Quasi-2D dusty plasma liquids and 2+1D dusty plasma
    liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
    2.2.3 The previous studies on quasi-2D dusty plasma liquids 10
    2.3 The micro-motion of 2D liquids . . . . . . . . . . . . . . . . . 10
    2.3.1 Dynamical heterogeneities: stick-slip type motion . . . 11
    2.3.2 The micro diffusion and multi-time scale dynamics . . 12
    2.3.3 The mean square relative displacement and collective
    motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
    2.4 The micro-structure: topological defect, bond-orientational
    order and spatiotemporal correlation functions . . . . . . . . . 15
    2.4.1 Topological defect in 2D triangular lattice . . . . . . . 15
    2.4.2 Bond-orientational order (BOO) and spatiotemporal
    correlation function . . . . . . . . . . . . . . . . . . . . 15
    3 Experiment and data analysis 20
    3.1 The experimental setup . . . . . . . . . . . . . . . . . . . . . . 20
    3.1.1 The Vacuum chamber, gas controlling system and the
    rf power system . . . . . . . . . . . . . . . . . . . . . . 20
    3.1.2 The Stereo-scanning system and the imaging system . 23
    3.1.3 The triggering system . . . . . . . . . . . . . . . . . . 24
    3.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
    4 Result and Discussion 26
    4.1 The chain bundle dusty plasma liquid as a 2+1D liquid . . . . 27
    4.2 The anisotropic collective micro-motion . . . . . . . . . . . . . 31
    4.2.1 Particle displacement evolution and the anisotropic relative
    displacement of a pair of particles . . . . . . . . . 32
    4.2.2 The collective motion in the horizontal plane . . . . . . 37
    4.2.3 The collective motion of the particles in the vertical
    chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
    4.3 The stereo collective excitations . . . . . . . . . . . . . . . . . 42
    4.4 The anisotropic diffusioin . . . . . . . . . . . . . . . . . . . . . 45
    4.4.1 The single particle diffusion in a horizontal plane . . . 46
    4.4.2 The mean square relative diffusion : a connection between
    diffusion and collective micro-motion . . . . . . . 48
    4.4.3 The four-point correlation . . . . . . . . . . . . . . . . 51
    4.5 The relation between chain dynamics and horizontal structural
    order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
    4.5.1 BOO vs horizontal particle displacement . . . . . . . . 53
    4.5.2 BOO vs chain tilting, tilting rate . . . . . . . . . . . . 54
    4.5.3 The correlation between the horizontal structural ordering
    and the stereo collective motion . . . . . . . . . 56
    5 Conclusion 58
    Reference [1] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (ACADEMIC PRESS LIMITED 1986).
    [2] E. Wigner, Trans. Farday Soc. 34, 678 (1939)
    [3] J. S. Olafsen and J. S. Urbach, Phys. Rev. Lett. 95, 098002 (2005)
    [4] P. M. Reis, R. A. Ingale, and M. D. Shattuck, Phys. Rev. Lett. 98,188301 (2007)
    [5] K. Zahn and G. Maret, Phys. Rev. Lett. 85, 3656 (2000).
    [6] J. H. Chu and L. I, Phys. Rev. Lett. 72, 4009 (1994).
    [7] H. H. Strey, J. Wang, R. Podgornik, A. Rupprecht, L. Yu, V. A.Parsegian, and E. B. Sirota, Phys. Rev. Lett. 84, 3105 (2000).
    [8] P. Auroy, Y. Mir, and L. Auvray, Phys. Rev. Lett. 69, 93(1992).
    [9] A. Wynveen and C. N. Likos, Phys. Rev. E 80, 010801R (2009).
    [10] T. C. Halsey and W. Toor, Phys. Rev. Lett. 65, 2820 (1990).
    [11] T. C. Halsey, J. E. Martin, and D. Adolf, Phys. Rev. Lett. 68, 1519 (1992).
    [12] D. Serantes, D. Baldomir, M. Pereiro, B. Hernando, V. M. Prida, J. L.Sánchez Llamazares, A. Zhukov, M. Ilyn, and J. González, Phys. Rev.B 80, 134421 (2009).
    [13] D. R. Nelson, Nature London 375, 356 (1995).
    [14] A. E. Koshelev and V. M. Vinokur, Phys. Rev. Lett. 73, 3580 (1994).
    [15] S. Bustingorry, L. F. Cugliandolo, and D. Dominguez, Phys. Rev. B 75,024506 (2007).
    [16] A. V. Petukhov, D. van der Beek, R. P. A. Dullens, I. P. Dolbnya, G. J.Vroege, and H. N. W. Lekkerkerker, Phys. Rev. Lett. 95, 077801 (2005).
    [17] C. L. Chan, C. W. Io, and L. I, Contrib. Plasma Phys. 49, 215 (2009).
    [18] W. T. Juan and L. I, Phys. Rev. Lett. 80, 3073 (1998).
    [19] Y. J. Lai and L. I, Phys. Rev. Lett. 89, 155002 (2002).
    [20] C. H. Chiang and L. I, Phys. Rev. Lett. 77, 647 (1996).
    [21] H. Thomas, G. E. Morfill, and V. Demmel, Phys. Rev. Lett. 73, 652 (1994).
    [22] A. Mertelj, L. Cmok, and M. Copic, Phys. Rev. E 79, 041402 (2009).
    [23] S. Joubaud, B. Percier, A. Petrosyan, and S.Ciliberto, Phys. Rev. Lett.102, 130601 (2009).
    [24] F. F. Chen, Introduction to plasma physics (Plenum press 1974).
    [25] B. Champman, Glow discharge processes (A Wiley-Interscience publication, 1980).
    [26] M. Nambu, S. V. Valdimirov, and P. K. Shukla, Phys. Lett. A 203, 40 (1995).
    [27] L. W. Teng, P. S. Tu, Phys. Rev. Lett. 90, 245004 (2003)
    [28] Lin I, W. T. Juan, and C. H. Clnang, Science 272, 1626 (1996)
    [29] W. Y. Woon and L. I, Phys. Rev. Lett. 92, 065003 (2004)
    [30] Y. S. Hsuan, and Lin I, Phys. Rev. E. 76, 016403 (2007)
    [31] C. L. Chan, W.Y. Woon and L. I, Phys. Rev. Lett. 93 220602 (2004)
    [32] A. Melzer, A. Homann, and A. Piel, Phys. Rev. E 53, 2757 (1996); R.A. Quinn and J. Goree, Phys. Rev. E 64, 051404 (2001)
    [33] C.W. Io and L. I, Phys. Rev. E 80, 036401 (2009).
    [34] V. Nosenko and J. Goree, Phys. Rev. Lett. 93, 155004 (2004); S. Nunomura, D. Samsonov, S. Zhdanov, and G. Morfill, ibid. 96, 015003 (2006).
    [35] S.Mashimo,S. Kuwabara, S. Yagihara, and K. Higasi, J. Phys. Chem.91, 6337-6338 (1987).
    [36] D.R. Nelson, Defects and Geommetry in Condensed Matter Physics(Cambrige University press , 2002)
    [37] K. J. Strandburg, Bond-Orientational Order in Condensed Matter Systems Springer, New York, 1992.
    [38] J.C. Crocker, M.T. Valentine, E.R. Weeks, T. Gisler, P.D. Kaplan, A.G.Yodh, and D.A. Weitz, Phys. Rev. Lett. 85, 888 (2000); C. Eisenamann, C. Kom, J.Mattsson, and D.A. Weitz, Phys. Rev. Lett. 104 035502 (2010)
    [39] C.L. Chan and L. I, Phys. Rev. Lett. 98, 105002 (2007).
    Advisor
  • Lin I(L)
  • Files
  • 962402002.pdf
  • disapprove authorization
    Date of Submission 2011-05-02

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.