Title page for 962206004


[Back to Results | New Search]

Student Number 962206004
Author Hsieng-jen Kong(孔祥仁)
Author's Email Address rick-show-22@yahoo.com.tw
Statistics This thesis had been viewed 1844 times. Download 2093 times.
Department Optics and Photonics
Year 2008
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Study of phosphor characteristic for high-power white LED package
Date of Defense 2009-07-09
Page Count 69
Keyword
  • LED
  • Package
  • Phosphor
  • Abstract In this thesis, we study YAG phosphor characteristic including scattering model, absorption coefficient and conversion efficiency. Mie scattering theory and Monte-Carlo ray tracing are used to describe the scatter of light in the phosphor layer. By fitting absorption coefficient and conversion efficiency of phosphor through experiment and simulation, we have successfully built an optical phosphor model. Furthermore, via using different blue sources to analyze absorption coefficient and conversion efficiency of phosphor, the validity of phosphor model is enhanced. Finally, since re-absorption effect decreases absorption coefficient and conversion efficiency, we analyze this effect by comparing different spectra from experiments.
    Table of Content 目錄
    摘要.......................................................................................................IV
    誌謝.......................................................................................................VI
    目錄..................................................................................................... VII
    圖索引...................................................................................................IX
    表索引................................................................................................. XII
    第一章 緒論...........................................................................................1
    1.1 LED 背景....................................................................................1
    1.2 研究動機...................................................................................4
    1.3 論文大綱...................................................................................5
    第二章 基本原理...................................................................................6
    2.1 引言...........................................................................................6
    2.2 LED 發光原理............................................................................6
    2.3 螢光粉發光原理........................................................................8
    2.4 LED 能量轉換過程..................................................................10
    第三章 螢光粉特性分析...................................................................... 11
    3.1 引言.........................................................................................11
    3.2 螢光粉散射行為......................................................................12
    3.3 不同晶片下螢光粉特性..........................................................18
    3.3.1 不同晶片下螢光粉吸收參數.........................................18
    3.3.2 不同晶片下螢光粉轉換係數.........................................28
    3.4 不同驅動電流下螢光粉特性..................................................31
    3.4.1 不同驅動電流下吸收係數.............................................31
    3.4.2 不同驅動電流下轉換係數.............................................35
    第四章 驗證與分析.............................................................................37
    4.1 引言.........................................................................................37
    4.2 螢光粉模型之驗證與分析......................................................37
    4.3 再吸收現象之探討..................................................................46
    第五章 結論.........................................................................................50
    參考文獻.....................................................................................51
    中英文名詞對照表...............................................................................54
    Reference [1]N. Holonyak, Jr., and S. F. Bevaqua, “Coherent(visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    [2]S. Nakamura and G. Fasol, The Blue Laser Diode: GaN vased light emitters and lasers (Springer, Berlin, 1997).
    [3]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
    [4]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
    [5]J. Y. Tsao, Light emitting diodes (LEDs) for general illumination: An OIDA technology roadmap update 2002 (Optoelectronics Industry Development Association, Washington D.C., 2002).
    [6]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “ Illumination with solid state lighting technology,” IEEE J. Sel. Topics Quantum Electron. 8, 310-320 (2002).
    [7]P. Roussel, “Markets and technology needs for UHB-LEDs,” Proc. of SPIE 6797, 679703 (2007).
    [8]T. F. McNulty et al., “UV reflector and UV-based light source having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
    [9]A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. of SPIE 4445, 148-155 (2001).
    [10]C. C. Yang, C. M. Lin, Y. J. Chen, Y. T. Wu, S. R. Chuang, R. S. Liu, and S. F. Hu, “Highly stable three-band white light from an InGaN-based blue light emitting diode chip precoated with oxynitride green/red phosphors,” Appl. Phys. Lett. 90, 123503 (2007).
    [11]Stelur et al., “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
    [12]D. Jia, W. Jia, and Y. Jia, “Long persistent alkali-earth silicate phosphors doped with Eu2+,Nd3+,” J. Appl. Phys. 101, 023520 (2007).
    [13]S. C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” J. Appl. Phys. 92, 143309 (2008).
    [14]A. Zukauskas, Introduction to Solid-State Lighting (John Wiley & Sons, NewYork, 2002). 
    [15]E. F. Schubert, Light Emitting Diodes (Cambridge University Press, Cambridge, 2003).
    [16]劉如熹,白光發光二極體用螢光粉最新發展,LED固態照明研討會論文集,中華民國九十七年。
    [17]N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined-atom-based nanophosphors for solid state lighting,” Proc. of SPIE 5187, 133-141 (2004).
    [18]R. Mueller-Mach, G. Mueller, M. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III- Nitrides,” IEEE J. Sel. Topics Quantum Electron. 8, 339-345 (2002).
    [19]R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination-grade white pcLEDs,” Proc. of SPIE 5187, 115-122 (2004).
    [20]Breault Research Organization, http://www.breault.com/
    [21]D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
    [22]C. F. Boren and D. R. Huffmarn, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
    [23]J. P. Chevaillier, J. Fabre, and P. Hamelin, “Forward scattered light intensities by a sphere located anywhere in a Gaussian beam,” Appl. Opt. 25, 1222-1225 (1986).
    [24]何信穎,白光LED之YAG螢光粉光學模型之研究,國立中央大學光電所碩士論文,中華民國九十六年。
    [25]GRMSTONE, http://socrates.berkeley.edu/~eps2/wisc/ri.html
    [26]H. Menkara, B. K. Wagner, and C. J. Summers, “Enhanced performance of solid state lighting phosphors,” Proc. of SPIE 6669, 66690L (2007).
    [27]C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I. M. Chan, and  J. T. Wang, “Monte Carlo simulation of optical properties of phosphor-screened ultraviolet light in a white light-emitting device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).
    [28]M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27, 250-263 (1979).
    [29]Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354-1361 (2001).
    [30]I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).
    [31]Á. Borbély and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
    [32]D. L. MacAdam, Spectrophotometry in Color Measurement, (Springer, Berlin, 1981).
    [33]C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
    [34]Cree EZ700, EZ1000, http://www.cree.com/
    [35]Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+(M = Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417, 273–279 (2006).
    [36]R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphors materials and combinations for illumination grade white pcLED,” Proc. of SPIE 5187, 115-122 (2004).
    [37]J. Hernandez-Andres, R. L. Lee, and J. Romero, “Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities,” Appl. Opt. 38, 5703-5709 (1999).
    Advisor
  • Ching-cheng Sun(孫慶成)
  • Files
  • 962206004.pdf
  • approve in 2 years
    Date of Submission 2009-07-27

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.