Title page for 962202031


[Back to Results | New Search]

Student Number 962202031
Author Zhe-lun Wang(王哲倫)
Author's Email Address w9212143@yahoo.com.tw
Statistics This thesis had been viewed 718 times. Download 452 times.
Department Physics
Year 2008
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Superconductivity and electron transport properties of In/Ni nanocomposites
Date of Defense 2009-06-22
Page Count 94
Keyword
  • electron transport
  • Ferromagnetic spin polarization
  • hopping conduction
  • nanoparticles
  • spin dependent
  • superconductivity
  • two component
  • type Ⅱ like
  • Abstract In this thesis we report on the characteristics of nanocomposite systems that are prepared by mixing superconducting and ferromagnetic materials. The influence of magnetic material on traditional superconductor is discussed through magnetic susceptibility,magnetization, and electron transport measurement. The five set of samples consist of same size of nickel nanoparticles with two different sizes of indium nanoparticles.
    Tc is reduced by interparticle proximity effect from neighboring magnetic particles. Furthermore, the electron transport reveals unusual two component behavior. Free electron model and Ginzburg-Landau theory are used to calculate GL parameter κ. Then according to the criterion of typeⅡ superconductor, the value of κ is greater than 1. From both the calculated κ value and two component behaviors, this system is classified to the typeⅡ-like superconductor. The diamagnetic signals of superconductivity in large particles are stronger than small ones.Interestingly, the small and large nanoparticles have shown entirely different physical properties.
    The small particle size sample shows the coexistence of
    superconductivity and hopping conduction at low temperature. Spin dependent magnetoresistance (MR) and negative MR at high applied magnetic field regime are observed at normal state and superconducting state respectively.
    In50-Ni50 is the sample in large particle size series. It shows diamagnetic superconducting signals under different applied magnetic field at below Tc. At temperature below 2.5K, magnetic susceptibility and magnetization increase with decreasing temperature which signals the existence of spin polarized moment. We attribute these behaviors to the
    coexistence of superconductivity and spin polarized moment. Moreover,the electron transport data exhibits superconductivity dependent double reentrant behavior and unconcerned with spin polarized magnetic moment.
    Table of Content 摘要...Ⅰ
    Abstract ...Ⅱ
    致謝...Ⅳ
    目錄...Ⅴ
    圖目錄...Ⅶ
    表目錄...XⅡ
    第一章 簡介..1
    1-1 奈米顆粒的物理特性...1
    1-2 超導奈米複合材料介紹...5
    1-3 研究目的...6
    參考資料...7
    第二章 In/Ni 奈米複合材料備製與分析...8
    2-1 奈米顆粒備製方法...8
    2-2 粒徑與成分分析...12
    2-3 複合奈米樣品製作...26
    2-4 電子傳輸與磁性量測...29
    參考資料...33
    第三章 電子傳輸與超導現象簡介...34
    3-1 巨磁阻效應GMR...34
    3-2 超導微粒系統之溫度相關電阻種類...36
    3-3 跳躍式電子傳輸...38
    參考資料...40
    第四章 弱超導性In/Ni 奈米複合材料...41
    4-1 類二類超導體...41
    4-2 超導與跳躍式電子傳輸共存...47
    4-3 自旋相關磁阻效應...56
    4-4 古柏對的磁擾動現象...64
    參考資料...68
    第五章 強超導性In/Ni 奈米複合材料...69
    5-1 雙凹入式電阻行為...69
    5-2 類二類超導體...74
    5-3 鐵磁與超導共存現象...81
    5-4 超導抗磁現象...85
    參考資料...91
    第六章 總結...92
    Reference 第一章
    [1] W. H. Li, C. C. Yang, F. C. Tsao, S. Y. Wu, P. J. Huang, M. K. Chung, and Y. D.Yao, Phys. Rev. B. 72, 214516 (2005).
    [2] Ph. Buffat and J-P. Borel, Phys. Rev. A13, 2287 (1976).
    [3] A. J. Cox et al. Phys. Rev. B49, 12295 (1994).
    [4] W. P. Halperin, Rev. Mod. Phys. 58, 533 (1986).
    [5] H. Hori, Y. Yamamoto, T. Iwamoto, T. Miura, T. Teranishi, and M. Miyake, Phys.Rev. B 69, 174411 (2004).
    [6] Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K.Kobayashi, T. Teranishi, and H. Hori, Phys. Rev. Lett. 93, 116801 (2004).
    [7] I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys.79, 469 (2007).
    [8] Anderson, P. W., 1959, J. Phys. Chem. Solids 1, 26.
    [9] Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957)
    [10] Abeles, B., 1977, Phys. Rev. B 15, 2828.
    [11] G. Deutscher, Y. Imry, and L. Gunther, Phys. Rev. B 10, 4598 (1974).
    [12] R. C. Dynes, J. P. Garno, and J. M. Rowell, Phys. Rev.Lett. 40, 479 (1978).
    [13] B. G. Orr, H. M. Jaeger, and A. M. Goldman,Phys. Rev. B 32, 7586 (1985).
    [14] Shapira, Y., and G. Deutscher, 1983, Phys. Rev. B 27, 4463.
    [15] C. Monton, F. de la Cruz, and J. Guimpel, Physical Review B (Condensed Matter and Materials Physics) 75, 064508 (2007).
    [16] M. Lange, M. J. V. Bael, A. V. Silhanek, and V. V.Moshchalkov, Phys. Rev. B72, 052507 (2005).
    [17] A. Palau, H. Parvaneh, N. A. Stelmashenko, H.Wang, J. L.Macmanus-Driscoll,and M. G. Blamire, Phys. Rev. Lett.98, 117003 (2007).
    第二章
    [1] 許樹恩,吳泰伯,X 光繞射原理與材料結構分析,第四刷(2006),中國材料科學學會,p124~125.
    [2] 許樹恩,吳泰伯,X 光繞射原理與材料結構分析,第四刷(2006),中國材料科學學會,p425~427.
    [3] 汪建民,材料分析,第六刷(2008),中國材料科學學會,第六章.
    [4] R. Espiau de Lamaestre and H. Bernas, Phys. Rev. B 73, 125317(2006).
    [5] 王進威,擬合X光繞射峰形判定奈米微粒粉末的粒徑分佈,中央大學碩士論文(2006)
    [6] 管曉慧,銦-鈷複合奈米材料的電子傳輸與磁阻探討,中央大學碩士論文(2008),p24 圖2.5 .
    第三章
    [1] 張慶瑞、蘇又新,物理雙月刊卅卷二期,p110~p115 (2008).
    [2] 江文中、李尚凡,物理雙月刊卅卷二期,p116~p121 (2008).
    [3] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G.Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
    [4] Shapira, Y., and G. Deutscher, Phys. Rev. B 27, 4463 (1983).
    [5] Jaeger, H. M., D. B. Haviland, B. G. Orr, and A. M. Goldman, Phys. Rev. B 40,182 (1989).
    [6] Liu, Y., D. B. Haviland, B. Nease, and A. M. Goldman,Phys. Rev. B 47, 5931(1993).
    [7] N.F.Moot and E.A.DavidaElectronic Processes in non-crystalline Material,second edition,p32~p37.
    [8] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
    第四章
    [1] Ashcroft/Mermin, Solid state physics(Brooks/Cole), p52.
    [2] Michael Tinkham, Introduction to Superconductivity(Dover), Second Edition,p118~120.
    [3] Abeles, B., P. Sheng, M. Coutts, and Y. Arie, 1975, Adv. Phys.24, 407.
    [4] Shklovskii, B. I., and A. L. Efros, 1988, Electronic Properties of Doped Semiconductors _Springer-Verlag, Berlin (1984).
    [5] Ashcroft/Mermin, Solid state physics(Brooks/Cole),p559.
    [6] 許均銓,奈米鉍顆粒間交互作用對自發磁性之影響,中央大學碩士論文(2009).
    [7] A. Fert and I. A. Campbell, Phys. Rev. Lett. 21, 1190 (1968).
    [8] A. Gerber et al., Phys. Rev. Lett. 78, 4277 (1997).
    [9] I.S. Beloborodov and K.B. Efetov, Phys. Rev. Lett. 82, 3332 (1999).
    [10] I. S. Beloborodov, K. B. Efetov, and A. I. Larkin, Phys. Rev. B 61, 9145 (2000).
    [11] L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela (Leningrad) 10, 1104 (1968),[Sov. Phys. Solid State 10, 875 (1968)].
    [12] K. Maki, Prog. Theor. Phys. 39, 897 (1968); 40, 193 (1968); R. S. Thompson,Phys. Rev. B 1, 327 (1970).
    [13] P. Wasilewski, Earth Planet. Sci. Lett. 20, 67 (1973).
    第五章
    [1] Liu, Y., D. B. Haviland, B. Nease, and A. M. Goldman, 1993,Phys. Rev. B 47,5931.
    [2] W.-H. Li, C.-W. Wang, C.-Y. Li, C. K. Hsu, C. C. Yang, and C.-M. Wu, Phys. Rev.B 77, 094508 (2008).
    [3] I. Sternfeld, V. Shelukhin, A. Tsukernik, M. Karpovski,A. Gerber, and A. Palevski,Phys. Rev. B 71, 064515 (2005).
    [4] C. J. Kircher, Phys. Rev. 168, 437 (1968).
    [5] O. Bourgeois, A. Frydman, and R. C. Dynes, Phys. Rev. B 68,092509 (2003).
    [6] P. G. De Gennes, Rev. Mod. Phys. 36, 225 (1964).
    [7] W. Silvert, Phys. Rev. B 12, 4870 (1975).
    [8] A. Hernando, P. Crespo, and M. A. García, Phys. Rev. Lett. 96,057206 (2006).
    [9] V. Sahni and K.-P. Bohnen, Phys. Rev. B 29, 104(1984); 31,7651 (1985).
    Advisor
  • Wen-Hsien Li(李文献)
  • Files
  • 962202031.pdf
  • approve immediately
    Date of Submission 2009-07-20

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.