Title page for 955201026


[Back to Results | New Search]

Student Number 955201026
Author Feng-lin Shiu(許豐麟)
Author's Email Address 955201026@cc.ncu.edu.tw
Statistics This thesis had been viewed 1241 times. Download 558 times.
Department Electrical Engineering
Year 2008
Semester 1
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title The Implementation of RF Front-End Receiving Circuits for Medical Implant Communication Service Band
Date of Defense 2008-10-10
Page Count 88
Keyword
  • LNA
  • low power consumption
  • Mixer
  • VCO
  • Abstract This paper investigates RF receiver front-end circuits for Medical Implant Communication Service (MICS). A 0.18 μm TSMC CMOS technology was adopted to implement the following circuits, gm-boosting low noise amplifier, low power consumption low noise amplifier, input impedance match mixer, low power consumption mixer, receiver circuit (LNA + Mixer), and voltage controlled oscillator.
      The first section is the design of two low noise amplifiers; An inverse gain between transistor’s gate and source was used to amplify the transconductance gm. Thus, this gm-boosting technique was used in LNA by adding cross couple capacitors. The measured gain is 11.84 dB with input and output return losses lower than 10 dB. The obtained noise figure and P1dB are 4.11 dB and -26dBm, respectively. The power dissipation of the circuit core is only 1.74 mW. In another LNA, the current reuse technique was applied for low power consumption. The shunt-feedback amplifier (SFB) and common-gate amplifier (CG) were combined to obtain a high gm. The measured gain is 10.37 dB with input and output return losses lower than 10 dB. The obtained noise figure and P1dB are 4.77 dB and -25 dBm, respectively. The power dissipation of the circuit core is only 0.51 mW.
      The second section describes the design of two mixers and a receiver. The size of transistors and resistors are optimized for the input impedance match without using huge area inductor. The measured conversion gain is 5.57 dB at 403.5 MHz. And the obtained P1dB and IIP3 are -11.5 dBm, and 3 dBm, respectively. The achieved isolations of LO_RF, LO_IF are better than -30 dB, and the RF_IF isolation is lower than -39 dB. The power dissipation of the circuit core is 2.88 mW. In another mixer, the local power is amplified to obtain the higher conversion gain. The current reuse technique was used to lower the power consumption. The measured conversion gain is 10.2 dB at 403.5 MHz. The obtained P1dB and IIP3 are -11.5 dBm, and 3 dBm, respectively. The achieved isolations of LO_RF, LO_IF are lower than -48 dB, and the RF_IF isolation is lower than -47 dB. The power dissipation of the circuit core is only 0.98 mW. Finally, LNA and mixer were combined to be a receiver. The measured conversion gain is 19.74 dB at 403.5 MHz. The noise figure is 7.02 dB with the input/output return losses of 7.9 dB and 24.5 dB. The obtained P1dB and IIP3 are -24 dBm, and -13 dBm, respectively. The achieved LO_RF, LO_IF isolations are lower than -72 dB, and the isolation RF_IF is lower than -28 dB. The power dissipation of the circuit core is only 1.65 mW.
    The third section describes the design of a voltage controlled oscillator. The transformer feedback was adopted to achieve low supply voltage. From the measurement the oscillation frequency of the designed VCO is 393.5 MHz with a phase noise of -137.37 dBc/Hz at 1 MHz offset. The output power of VCO with cable loss is -5.66 ~ -4.76 dBm. The power consumption of VCO is 1.23 mW with an excellent Figure-of-Merit (FOM) of -188.33 dBc/Hz.
    Table of Content 中文摘要 ............................................................................................................... I
    英文摘要 ............................................................................................................. III
    致謝 ...................................................................................................................... V
    目錄 ................................................................................................................... VII
    圖目錄 ................................................................................................................ IX
    表目錄 .............................................................................................................. XIII
    第一章 緒論 ..................................................................................... 1
    1-1 研究動機 ................................................................................................ 1
    1-2 研究成果 ................................................................................................ 2
    1-3 章節簡述 ................................................................................................ 2
    第二章 低雜訊放大器 ...................................................................... 3
    2-1 低雜訊放大器簡介 ................................................................................. 3
    2-2 低雜訊放大器之重要參數與MOS 電晶體雜訊 .................................... 3
    2-2-1 低雜訊放大器之重要參數 ........................................................... 3
    2-2-2 MOS 電晶體雜訊 ......................................................................... 6
    2-3 轉導提升低雜訊放大器 .......................................................................... 8
    2-3-1 轉導提升低雜訊放大器架構 ....................................................... 8
    2-3-2 轉導提升低雜訊放大器模擬與量測結果 .................................. 11
    2-3-3 轉導提升低雜訊放大器結果討論 ............................................. 16
    2-4 低功率消耗低雜訊放大器 .................................................................... 16
    2-4-1 低功率消耗低雜訊放大器架構 ................................................. 16
    2-4-2 低功率消耗低雜訊放大器模擬與量測結果 .............................. 21
    2-4-3 低功率消耗低雜訊放大器結果討論 ......................................... 25
    第三章 混頻器 ............................................................................... 27
    3-1 混頻器簡介 ........................................................................................... 27
    3-2 混頻器之重要參數 ............................................................................... 27
    3-3 轉導級輸入匹配混頻器 ........................................................................ 30
    3-3-1 轉導級輸入匹配混頻器架構 ..................................................... 30
    3-3-2 轉導級輸入匹配混頻器模擬與量測結果 .................................. 32
    3-3-3 轉導級輸入匹配混頻器結果討論 ............................................. 38
    3-4 應用於MICS 低功率消耗混頻器 ........................................................ 38
    3-4-1 應用於MICS 低功率消耗混頻器架構 ...................................... 38
    3-4-2 應用於MICS 低功率消耗混頻器模擬與量測結果 .................. 42
    3-4-3 應用於MICS 低功率消耗混頻器結果討論 .............................. 47
    3-5 應用於MICS 接收機 ............................................................................ 48
    3-5-1 應用於MICS 接收機架構 ......................................................... 48
    3-5-2 應用於MICS 接收機模擬與量測結果 ...................................... 49
    3-5-3 應用於MICS 接收機結果討論 ................................................. 55
    第四章 壓控振盪器 ........................................................................ 57
    4-1 壓控振盪器簡介 ................................................................................... 57
    4-2 壓控振盪器之重要參數 ........................................................................ 57
    4-3 變壓器回授振盪器 ............................................................................... 58
    4-4 變壓器回授振盪器模擬與量測結果 .................................................... 63
    4-5 變壓器回授振盪器結果討論 ................................................................ 67
    第五章 結論 ................................................................................... 68
    5-1 結論 ..................................................................................................... 68
    5-2 未來期許與研究方向 .......................................................................... 69
    參考文獻 ............................................................................................................ 70
    Reference [1]F. Gatta, E. Sacchi, F. Svelto, P. Vilmercati, R. Castello, “A 2-dB noise figure 900-MHz differential CMOS LNA,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1444-1452, Oct 2001.
    [2]F. Bruccoleri, E.A.M. Klumperink, B. Nauta, “Noise cancelling in wideband CMOS LNAs,” IEEE International Solid-State Circuits Conference, vol. 1, pp. 406-407, Feb 2002.
    [3]E. Zencir, N.S. Dogan, E. Arvas, “A low-power 435-MHz SOI CMOS LNA and mixer,” Microwave Symposium Digest, IEEE MTT-S International, vol. 1, pp. 555-558, June 2003.
    [4]Namsoo Kim, V. Aparin, K. Barnett, C. Persico, “A cellular-band CDMA 0.25-μm CMOS LNA linearized using active post-distortion,” IEEE J. Solid-State Circuits, vol. 41, no. 7, pp. 1530-1534, July 2006.
    [5]F. Zhang, P.R. Kinget, “Low-power programmable gain CMOS distributed LNA,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1333-1343, June 2006.
    [6]Keng Leong Fong, C.D. Hull, R.G. Meyer, “A class AB monolithic mixer for 900-MHz applications,” IEEE J. Solid-State Circuits, vol. 32, no. 8, pp. 1166-1172, Aug 1997.
    [7]Wang-Chi Cheng, Cheong-Ft Chan, Chiu-Sing Choy, Kong-Pang Pun, “A 1.2 V 900 MHz CMOS mixer,” Circuits and Systems, ISCAS IEEE International Symposium on, vol. 5, pp. 365-368, May 2002.
    [8]Shuenn-Yuh Lee, Ming-Feng Huang, C.J. Kuo, “Analysis and implementation of a CMOS even harmonic mixer with current reuse for heterodyne/direct conversion receivers,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 52, no. 9, pp. 1741-1751, Sept 2005.
    [9]E. Zencir, N.S. Dogan, E. Arvas, “A low-power UHF RF frontend for a low-IF receiver,” ASIC/SOC Conference, Annual IEEE International, pp. 331-335, Sept 2002.
    [10]Adiseno, M. Ismail, H. Olsson, “A wide-band RF front-end for multiband multistandard high-linearity low-IF wireless receivers,” IEEE J. Solid-State Circuits, vol. 37, no. 9, pp.1162-1168, Sep 2002.
    [11]Trung-Kien Nguyen, Sang-Gug Lee, Dong-Kyun Kang, “A 900 MHz CMOS RF Direct Conversion Receiver Front-end with 3-dB NF and 30-KHz 1/f Noise Corner,” Asian Solid-State Circuits Conference, pp. 349-352, Nov 2005.
    [12]A. Amer, E. Hegazi, H.F. Ragaie, “A 90-nm Wideband Merged CMOS LNA and Mixer Exploiting Noise Cancellation,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 323-328, Feb 2007.
    [13]M.A. Margarit, Joo Leong Tham, R.G. Meyer, M.J. Deen, “A low-noise, low-power VCO with automatic amplitude control for wireless applications,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 761-771, June 1999.
    [14]C.M. Hung, K.K.O, “A packaged 1.1-GHz CMOS VCO with phase noise of -126 dBc/Hz at a 600-kHz offset,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 100-103, June 2000.
    [15]K. Kwok, H.C. Luong, “Ultra-low-Voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652-660, Mar 2005.
    [16]Seong-Mo Yim, K.K.O, “Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO,” Microwave Theory and Techniques, IEEE Transactions on, vol. 54, no. 1, pp. 74-81, June 2006.
    [17]L.H. Lu, H.H. Hsieh, Y.T. Liao, “A Wide Tuning-Range CMOS VCO With a Differential Tunable Active Inductor,” Microwave Theory and Techniques, IEEE Transactions on, vol. 54, no. 9, pp. 3462-3468, Sept 2006.
    [18]A. Amer, E. Hegazi, H. Ragai, “A Low-Power Wideband CMOS LNA for WiMAX,” Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 54, no. 1, pp. 4-8, Jan 2007.
    [19]S.B.T. Wang, A.M. Niknejad, R.W. Brodersen, “Design of a Sub-mW 960-MHz UWB CMOS LNA,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2449-2456, Nov 2006.
    [20]F. Bruccoleri, E.A.M. Klumperink, B. Nauta, “Generating all two-MOS-transistor amplifiers leads to new wide-band LNAs,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1032-1040, July 2001.
    [21]E.A.M. Klumperink, S.M. Louwsma, G.J.M. Wienk, B. Nauta, “A CMOS switched transconductor mixer,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1231-1240, Aug 2004.
    [22]Kung-Hao Liang, Hong-Yeh Chang, Yi-Jen Chan, “A 0.5–7.5 GHz Ultra Low-Voltage Low-Power Mixer Using Bulk-Injection Method by 0.18- μm CMOS Technology,” Microwave and Wireless Components Letters, IEEE, vol. 17, no. 7, pp.531-533, July 2007.
    [23]Hanil Lee, S. Mohammadi, “A 500uW 2.4GHz CMOS Subthreshold Mixer for Ultra Low Power Applications,” Radio Frequency Integrated Circuits (RFIC) Symposium, IEEE, pp.325-328, June 2007.
    [24]Ta-Tao Hsu, Chien-Nan Kuo, “Low voltage 2mW 6~10.6-GHz ultra-wideband CMOS mixer with active balun,” Circuits and Systems, ISCAS. Proceedings. IEEE International Symposium on, pp.5704-5707, May 2006.
    [25]Ho Suk Kang, Sang Geun Lee, Choi, Byoung Gun, Chul Soon Park, “A New Switching Technique for Low Power Mixer with Body Terminal,” Radio and Wireless Symposium, IEEE, pp.439-441, Jan 2007.
    [26]K. Hoshino, E. Hegazi, J.J. Rael, A.A. Abidi, “A 1.5V, 1.7mA 700 MHz CMOS LC oscillator with no upconverted flicker noise,” Solid-State Circuits Conference, ESSCIRC. Proceedings of the 27th European, pp.337-340, Sept 2001.
    [27]A. Tekin, E. Zencir, D. Huang, W. Liu, N.S. Dogan, “A 700-MHz VCO using high-Q silicon on insulator (SOI) inductors,” Radio and Wireless Symposium, IEEE, pp.427-429, Jan 2006.
    [28]Soens C, Van der Plas G, Wambacq P, Donnay S, “Substrate noise immune design of an LC-tank VCO using sensitivity functions,” Custom Integrated Circuits Conference, Proceedings of the IEEE, pp.477-480, Sept 2005.
    [29]D. Guermandi, P. Tortori, E. Franchi, A. Gnudi, “A 0.83-2.5-GHz continuously tunable quadrature VCO,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2620-2627, Dec 2005.
    [30]N. Itoh, B. De Muer, M. Steyaert, “Low supply voltage fully integrated CMOS VCO with three terminals spiral inductor,” Solid-State Circuits Conference, Proceedings of the 25th European, pp. 194-197, Sept 1999.
    [31]梁可駿, “以脈衝靈敏函數分析壓控振盪器之相位雜訊特性與K頻段差動低雜訊放大器之研製,” 國立中央大學電機工程研究所碩士論文, 2007.
    Advisor
  • Hwann-Kaeo Chiou(邱煥凱)
  • Files
  • 955201026.pdf
  • approve in 2 years
    Date of Submission 2008-10-14

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.