Title page for 953204015


[Back to Results | New Search]

Student Number 953204015
Author Ching-pei Su(蘇青珮)
Author's Email Address 953204015@cc.ncu.edu.tw
Statistics This thesis had been viewed 2057 times. Download 902 times.
Department Chemical and Materials Engineering
Year 2007
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Biocompatibility studies of commercial porous polymeric membranes by plasma protein adsorption and platelet adhesion
Date of Defense 2008-07-08
Page Count 116
Keyword
  • biocompatibility
  • plasma protein adsorption
  • platelet adhesion
  • porous polymeric membranes
  • Abstract Surface properties of poymeric biomaterials, such as specific functional groups, charges, and hydrophobicity, play important roles in modulating protein adsorption and cell adhesion on polymeric membranes. Besides, the competitive nature of protein adsorption makes the adsorption behavior and the induced cell adhesion complex. The competitive adsorption of proteins depends upon its molecular weight, bulk concentration of proteins and surface affinity to the proteins.
    The major focus of this study is to investigate the influencing factors for plasma protein adsorption and platelet adhesion on the membrane filters having various kinds of chemical structure and pore size. We found that the adsorption amounts of fibrinogen and ?-globulin decreased while increase of that of human serum albumin (HSA) increased with the membrane hydrophobicity increasing. The human serum albumin was more adsorbed on the membranes from platelet-poor-plasma (PPP) than from mixed protein solution (MPS) consisting of human albumin, ?-globulin and fibrinogen. This tendency was extensively found on hydrophobic membranes compared to the hydrophilic membranes. The number of adhering platelets was lower on membranes with a decreased amount of adsorbed fibrinogen. Suppression of platelet adhesion could be elucidated by a reduction of protein adsorption, in particular of fibrinogen, which bound to the platelet membrane glycoprotein, GP IIb–IIIa. Time-dependent adsorption of fibrinogen indicates that Vroman effect, the displacement of fibrinogen, induced on the flat surface such as glass plates, but was not observed on the porous polymeric membranes.
    Table of Content 目錄
    中文摘要I
    ABSTRACTIII
    誌謝IV
    目錄V
    圖目錄VIII
    表目錄XII
    第一章 緒論1
    第二章 文獻回顧4
    2.1 血液相容性材料的探討4
    2.1.1 血漿蛋白質吸附8
    2.1.2 血小板吸附與活化13
    2.1.3白血球的貼附與活化及發炎反應 (inflammatory response)17
    2.2 多孔性高分子膜23
    2.2.1多孔性高分子膜應用在血液透析的發展23
    2.2.2常見高分子膜材料回顧26
    第三章 實驗藥品與儀器設備30
    3.1 實驗藥品30
    3.2 儀器設備32
    3.3 實驗方法33
    3.3.1 PBS緩衝液的製備33
    3.3.2 蛋白質吸附實驗33
    3.3.2.1 血漿溶液的製備33
    3.3.2.2 蛋白質吸附實驗(實驗組)33
    3.3.2.3 蛋白質吸附實驗(控制組)35
    3.3.2.4 不同時間血漿蛋白質的吸附35
    3.3.3 血小板貼附實驗36
    3.3.3.1 血小板溶液的製備36
    3.3.3.2 血小板貼附36
    3.3.3.3單一蛋白質吸附後再進行血小板貼附37
    3.3.3.4血漿蛋白質隨時間吸附後再進行血小板貼附37
    第四章 結果與討論39
    4.1 表面分析39
    4.2 蛋白質吸附實驗41
    4.2.1 水接觸角與蛋白質吸附的關係41
    4.2.2混合蛋白質溶液(Mixed protein solution, MPS)與血小板貧乏血漿(Platelet-poor-plasma, PPP)蛋白質吸附量的關係43
    4.3血小板貼附實驗50
    4.3.1水接觸角、蛋白質吸附與富含血小板血漿(PRP)中血小板貼附的關係
    50
    4.3.2富含血小板血漿(PRP)中血小板貼附之SEM形貌圖53
    4.3.3蛋白質吸附與血小板貼附之關係61
    4.3.3.1 Fibrinigen對血小板貼附的影響63
    4.3.3.2 HSA對血小板貼附的影響66
    4.3.3.3 IgG對血小板貼附的影響70
    4.4蛋白質不同吸附時間之吸附量74
    4.4.1比較PPP與MPS中蛋白質隨時間的吸附74
    4.4.2 PPP中蛋白質隨時間的吸附後進行血小板的貼附77
    4.4.2.1血漿蛋白質隨時間吸附於PC膜後,血小板的貼附情形77
    4.4.2.2血漿蛋白質隨時間吸附於PTFE膜後,血小板的貼附情形80
    4.4.2.3血漿蛋白質隨時間吸附於玻璃蓋玻片後,血小板的貼附情形83
    第五章 結論89
    第六章 參考文獻92
    圖目錄
    圖2-1 凝血機制7
    圖2-2 酵素連結免疫吸附分析法之簡易流程圖12
    圖2-3 血小板的對多項生理機能的調控14
    圖2-4 Foreign body reaction19
    圖2-5 白血球、血小板與內皮細胞之間的相對應受器20
    圖2-6 常見的PEG固定化方法27
    圖3-1 酵素連結免疫吸附分析儀32
    圖4-1 各多孔性高分子膜之靜態水接觸角量測值39
    圖4-2 FN(PPP)吸附與接觸角之關係42
    圖4-3 IgG(PPP)吸附與接觸角之關係42
    圖4-4 HSA(PPP)吸附與接觸角之關係42
    圖4-5 對血漿進行稀釋後測試其吸附量的差異43
    圖4-6 FN於MPS與PPP中吸附量的關係(不同膜材)44
    圖4-7 IgG於MPS與PPP中吸附量的關係(不同膜材)44
    圖4-8 HSA於MPS與PPP中吸附量的關係(不同膜材)44
    圖4-9 FN於MPS與PPP中吸附量的關係(不同親疏水性)45
    圖4-10 IgG於MPS與PPP中吸附量的關係(不同親疏水性)45
    圖4-11 HSA於MPS與PPP中吸附量的關係(不同親疏水性)45
    圖4-12 綜合比較三種蛋白質於MPS與PPP中吸附量的關係46
    圖4-13 Fibrinogen結構示意圖48
    圖4-14 血小板計數方法50
    圖4-15 血小板貼附量與接觸角關係圖51
    圖4-16 血小板貼附量與FN吸附量關係圖51
    圖4-17 血小板貼附量與HSA吸附量關係圖52
    圖4-18 SEM拍攝之血小板貼附表面形貌53
    圖4-19 聚碳酸脂膜(polycarbonate, PC)表面PRP血小板的貼附54
    圖4-20 鐵氟龍(PTFE)表面PRP血小板的貼附55
    圖4-21 聚偏二氟乙烯樹脂膜(PVDF)表面PRP血小板的貼附58
    圖4-22 聚碸(PSf)表面PRP血小板的貼附59
    圖4-23 醋酸脂膜(cellulose acetate, CA)表面PRP血小板的貼附59
    圖4-24 聚碳酸脂膜(PC, 0.2?m)在FN吸附後,
    PRP中的血小板貼附表面形貌62
    圖4-25 聚碳酸脂膜(PC, 0.2?m)在FN吸附後,
    SFP中的血小板貼附表面形貌62
    圖4-26 聚偏二氟乙烯樹脂膜(PVDF, 0.22?m)在FN吸附後,
    PRP中的血小板貼附表面形貌63
    圖4-27 聚偏二氟乙烯樹脂膜(PVDF, 0.22?m)在FN吸附後,
    SFP中的血小板貼附表面形貌63
    圖4-28 鐵氟龍(PTFE, 0.2?m)在FN吸附後,
    PRP中的血小板貼附表面形貌64
    圖4-29 鐵氟龍(PTFE, 0.2?m)在FN吸附後,
    SFP中的血小板貼附表面形貌64
    圖4-30 單一蛋白質吸附3小時後之ELISA吸收值65
    圖4-31 聚碳酸脂膜(PC, 0.2?m)在HSA吸附後,
    PRP中的血小板貼附表面形貌66
    圖4-32 聚碳酸脂膜(PC, 0.2?m)在HSA吸附後,
    SFP中的血小板貼附表面形貌66
    圖4-33 聚偏二氟乙烯樹脂膜(PVDF, 0.22?m)在HSA吸附後,
    PRP中的血小板貼附表面形貌67
    圖4-34 聚偏二氟乙烯樹脂膜(PVDF, 0.22?m)在HSA吸附後,
    SFP中的血小板貼附表面形貌67
    圖4-35 鐵氟龍(PTFE, 0.2?m)在HSA吸附後,
    PRP中的血小板貼附表面形貌68
    圖4-36 鐵氟龍(PTFE, 0.2?m)在HSA吸附後,
    SFP中的血小板貼附表面形貌68
    圖4-37 聚碳酸脂膜(PC, 0.2?m)在IgG吸附後,
    PRP中的血小板貼附表面形貌70
    圖4-38 聚碳酸脂膜(PC, 0.2?m)在IgG吸附後,
    SFP中的血小板貼附表面形貌70
    圖4-39 聚偏二氟乙烯樹脂膜(PVDF, 0.22?m)在IgG吸附後,
    PRP中的血小板貼附表面形貌71
    圖4-40 聚偏二氟乙烯樹脂膜(PVDF, 0.22?m)在IgG吸附後,
    SFP中的血小板貼附表面形貌71
    圖4-41 鐵氟龍(PTFE, 0.2?m)在IgG吸附後,
    PRP中的血小板貼附表面形貌72
    圖4-42 鐵氟龍(PTFE, 0.2?m)在IgG吸附後,
    SFP中的血小板貼附表面形貌72
    圖4-43 MPS中的FN隨時間吸附量74
    圖4-44 PPP中的FN隨時間吸附量75
    圖4-45 MPS中的IgG隨時間吸附量75
    圖4-46 PPP中的IgG隨時間吸附量75
    圖4-47 MPS中的HSA隨時間吸附量76
    圖4-48 PPP中的HSA隨時間吸附量76
    圖4-49 PC膜(0.2?m)先以PPP蛋白質吸附特定時間後進行血小板的貼附77
    圖4-50 PTFE膜(0.2?m)先以PPP蛋白質吸附特定時間後進行血小板的貼附80
    圖4-51 玻璃蓋玻片先以PPP蛋白質吸附特定時間後進行血小板的貼附84
    圖4-52 PTFE膜表面FN吸附與血小板貼附關係於各部份實驗中結果之比較87
    表目錄
    表2-1 心血管設備可能引起之併發症5
    表2-2 常見之有機高分子生物材料與其醫療用途6
    表2-3 血液組成9
    表2-4 血小板細胞表面感受器15
    表2-5 白血球的種類18
    表2-6 白血球之表面受器20
    表2-7 白血球表面與發炎反應相關的受器22
    表2-8 1965年前非薄膜式的血液透析器設計24
    表2-9 生醫用膜發展24
    表2-10 常見的表面性質分析方法28
    表3-1 使用膜材之成分、廠牌與孔徑大小。31
    表4-1 Fibrinogen、?-globulin與Human serum albumin的分子量48
    表4-2 血小板於多孔性高分子膜表面貼附數量51
    Reference 1. Padera R. F., F. J. Schoen, Cardiovascular Medical Devices. In Biomaterials Science. An introduction to materials in medicine; Ratner B. D., A. S. Hoffman, F. J. Schoen,; J. E. Lemons, Eds.; Elsevier, Academic Press: San Diego, CA, 2004, 470-494.
    2. Seal B. L., T.C. Otero, A. Panitch, Polymeric biomaterials for tissue and organ regeneration. Material Science and Engineering: Reports, 2001, 34, 147-230.
    3. Pizzoferrato A., G. Ciapetti, S. Stea, E. Cenni, C.R. Arciola, D. Granchi, L. Savarino, Cell culture methods for testing biocompatibility. Clinical Materials, 1994, 15, 173-190.
    4. Kirkpatrick C. J., F. Bittinger, M. Wagner, H. Kohler, T.G. van Kooten, C.L. Klein, M. Otto, Current trends in biocompatibility testing. Proceeding of the Institution of Mechanical Engineering [H], 1998, 212, 75-84.
    5. Ramakrishna S., J. Mayer, E. Wintermantel, K.W. Leong. Biomedical applications of polymer-composite materials: a review. Composites Science and Technology, 2001, 61, 1189-1224.
    6. Nydegger U., R. Rieben, B. Lammle, Biocompatibility in transfusion medicine. Transfusion Science, 1996, 4, 481-488.
    7. Kurtza S. M., J. N. Devine, PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28, 4845-4869.
    8. Oh S. H., J. H. Kim, K. S. Song, B. H. Jeon, J. H. Yoon, T. B. Seo, U. Namgung, I. W. Lee, J. H. Lee, Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials, 2008, 29, 1601-1609.
    9. Ye S. H., J. Watanabe, M. Takai, Y. Iwasaki, K. Ishihara, High functional hollow fiber membrane modified with phospholipid polymers for a liver assist bioreactor. Biomaterials, 2006, 27, 1955-1962.
    10. Brown B. A., Hematology: Principles and Procedures, Philadelphia Lea & Febiger, 1993.
    11. Rodrigues S. N., I. C. Gonc-alves, M. C. L. Martins, M. A. Barbosa, B. D. Ratner, Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 2006, 27, 5357-5367.
    12. Savage B., Z. M. Ruggeri, Selective recognition of adhesive sites in surface-bound fibrinogen by glycoprotein-IIb-IIIa on nonactivated platelets. Journal of Biological Chemistry, 1991, 266, 11227–11233.
    13. Tsai W. B., J. M. Grunkemeier, C. D. McFarland, T. A. Horbett, Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand’s factor. Journal of Biomedical Materials Research, 2002, 60, 348-359.
    14. Kottkemarchant K., J. M. Anderson, Y. Umemura, R. E. Marchant, Effect of albumin coating on the invitro blood compatibility of dacron arterial prostheses. Biomaterials, 1989, 10, 147-155.
    15. Liu T. Y., W. C. Lin, L. Y. Huang, S. Y. Chen, M. C. Yang, Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials, 2005, 26, 1437-1444.
    16. Jenney C.R., J. M. Anderson, Adsorbed serum proteins responsible for surface dependent human macrophage behavior. Journal of Biomedical Materials Research, 2000, 49, 435-447.
    17. Brodbeck W. G., E. Colton, J. M. Anderson, Effects of adsorbed heat labile serum proteins and fibrinogen on adhesion and apoptosis of monocytes/macrophages on biomaterials. Journal of Material Science, Material in Medicine, 2003, 14, 671-675.
    18. Jenney C. R., J. M. Anderson, Adsorbed IgG: a potent adhesive substrate for human macrophages. Journal of Biomedical Materials Research, 2000, 50, 281-290.
    19. Hu W. J., J. W. Eaton, T. P. Ugarova, L. Tang, Molecular basis of biomaterial mediated foreign body reactions. Blood, 2001, 98, 1231-1238.
    20. Moriau M., E. P. Lavenne, J. M. Scheiff, C. Col Debeys, The physiological mechanisms of haemostasis. In Blood Platelets; Hologramme Ed.: Neuilly-sur-Seine, 1988.
    21. Knetsch M. L.W., Y. B. J. Aldenhoff, L. H. Koole, The effect of high-density-lipoprotein on thrombus formation on and endothelial cell attachement to biomaterial surfaces. Biomaterials, 2006, 27, 2813-2819.
    22. Horbett T., The role of adsorbed proteins in tissue response to biomaterials. In: Biomaterials science: an introduction to biomaterials in medicine; Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons, editors. San Diego, CA: Elsevier Academic Press; 2004, 237-246.
    23. Xu L. C., C. A. Siedlecki, Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials, 2007, 28, 3273-3283.
    24. Krishnan A., C. A. Siedlecki, E. A. Vogler, Mixology of Protein Solutions and the Vroman Effect. Langmuir, 2004, 20, 5071-5078
    25. Cornelius R. M., J. Archambault, J. L. Brash, Identification of apolipoprotein A-I as a major adsorbate on biomaterial surfaces after blood or plasma contact. Biomaterials, 2002, 23, 3583-3587.
    26. Lück M., B. R. Paulke, W. Schröder, T. Blunk, R. H. Müller, Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. Journal of Biomedical Materials Research, 1998, 39, 478-485.
    27. Higuchi A., K. Sugiyama, B. O. Yoon, M. Sakurai, M. Hara, M. Sumita, S. Sugawara, T. Shirai, Serum protein adsorption and platelet adhesion on pluronic™-adsorbed polysulfone membranes. Biomaterials, 2003, 24, 3235-3245.
    28. Andersson J., K. N. Ekdahl, J. D. Lambris, B. Nilsson, Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials, 2005, 26, 1477-1485.
    29. Engvall E., P. Perlmann, Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry, 1971, 8, 871-874.
    30. Harrison P., Platelet function analysis. Blood Reviews, 2005, 19, 111-123
    31. Gorbet M. B., M. V. Sefton, Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials, 2004, 25, 5681-5703.
    32. Calvete J. J., Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein IIb/IIIa complex. Journal of Thrombosis and Haemostasis, 1994, 72, 1-15.
    33. Tamada Y., E. A. Kulik, Y. Ikada, Simple method for platelet counting. Biomateriols, 1995, 16, 259-261.
    34. Blockmans D., H. Deckmyn, J. Vermylen, Platelet activation. Blood Reviews, 1995, 9, 143-156.
    35. Zarbock A., R. K. Polanowska-Grabowska, K. Ley, Platelet-neutrophil-interactions: Linking hemostasis and inflammation. Blood Reviews, 2007, 21, 99-111.
    36. Jy W., W. W. Mao, L. L. Horstman, J. Tao, Y. S. Ahn, Platelet microparticles bind, activate and aggregate neutrophils in vitro. Blood Cells, Molecules, and Diseases, 1995, 21, 217-31.
    37. Itoh S., C. Susuki, T. Tsuji, Platelet activation through interaction with hemodialysis membranes induces neutrophils to produce reactive oxygen species. Journal of Biomedical Materials Research Part A, 2006, 77A, 294-303.
    38. Ramström S., K. V. Öberg, F. Åkerström, C. Enström, T. L. Lindahl, Platelet PAR1 receptor density-Correlation to platelet activation response and changes in exposure after platelet activation. Thrombosis Research, 2008, 121, 681-688.
    39. Anderson J. M., A. Rodriguez, D. T. Chang, Foreign body reaction to biomaterials. Seminars in Immunology, 2008, 20, 86-100.
    40. Shen M., I. Garcia, R. V. Maier, T. A. Horbett, Effects of adsorbed proteins and surface chemistry on foreign body giant cell formation, tumor necrosis factor alpha release and procoagulant activity of monocytes. Journal of Biomedical Materials Research, 2004, 70A, 533-541.
    41. Nathan C. F., Secretory products of macrophages. Journal of Clinical Investigation, 1987, 79, 319-326.
    42. Camerer E, Kolsto A-B, and Pridz H, “Cell biology oftissue factor, the principal initiator ofcoagulation.” Thrombosis Research, 1996, 81, 1-41.
    43. Smith J. A., Neutrophils, host defense, and inflammation; a double-edged sword. Journal of Leukocyte Biology, 1994, 56, 672-686.
    44. Anderson J. M., K. M. Miller, Biomaterial biocompatibility and the macrophage. Biomaterials, 1984, 5, 5-10.
    45. Shen M., T. A. Horbett, The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces. Journal of Biomedical Materials Research, 2001, 57, 336-345.
    46. Hunt J. A., G. Meijs, D. F. Williams, Hydrophilicity of polymersand soft tissue responses: a quantitative analysis. Journal of Biomedical Materiels Reseach, 1997, 36, 542-549.
    47. Collier T. O., J. M. Anderson, Protein and surface effects on monocyte and macrophage adhesion, maturation, and survival. Journal of Biomedical Materials Research, 2002, 60, 487-496.
    48. Iwasaki Y., S. Sawada, K. Ishihara, G. Khang, and H. B. Lee, Reduction of surface-induced inflammatory reaction on PLGA/MPC polymer blend. Biomaterials, 2002, 23, 3897-3903.
    49. Klein E., The modern history of haemodialysis membranes and controllers. Nephrology, 1998, 4, 255-265.
    50. Wang Z. G., L. S. Wan, Z. K. Xu, Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. Journal of Membrane Science, 2007, 304, 8-23.
    51. Czop J. K., K.F. Austen, Properties of glycans that activate the human alternative complement pathway and interact with the human monocyte beta-glucan receptor. Journal of Immunology, 1985, 135, 3388-3393.
    52. Liu T. Y., W. C. Lin, L. Y. Huang, S. Y. Chen, M. C. Yang, Surface characteristics and hemocompatibility of PAN/PVDF blend membranes. Polymers for Advanced Technology, 2005, 16, 413-419.
    53. Dai Z. W., F. Q. Nie, Z. K. Xu, Acrylonitrile-based copolymer membranes containing reactive groups: Fabrication dual-layer biomimetic membranes by the immobilization of biomacromolecules. Journal of Membrane Science 2005, 264, 20-26.
    54. Higuchi A., H. Hashiba, R. Hayashi, B. O. Yoon, M. Sakurai, M. Hara, Serum protein adsorption and platelet adhesion on aspartic-acid-immobilized polysulfone membranes. Journal of Biomaterial Science, Polymer Edn, 2004, 15, 1051-1063.
    55. Zhao C., X. Liu, M. Nomizu, N. Nishi, Blood compatible aspects of DNA-modified polysulfone membrane-protein adsorption and platelet adhesion. Biomaterials, 2003, 24, 3747-3755.
    56. Lin D. J., D. T. Lin, T. H. Young, F. M. Huang, C. C. Chen, L. P. Cheng, Immobilization of heparin on PVDF membranes with microporous structures. Journal of Membrane Science, 2004, 245, 137-146.
    57. Zhang Z., S. Chen, Y. Chang, S. Jiang, Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. Journal of Physical Chemistry B, 2006, 110, 10799-10804.
    58. Park J. Y., M. H. Acar, A. Akthakul, W. Kuhlman, A. M. Mayes, Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials, 2006, 27, 856-865.
    59. Xua Z. K., F. Q. Nie, C. Qu, L. S. Wan, J. Wu, K. Yao, Tethering poly(ethylene glycol)s to improve the surface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetric membranes. Biomaterials, 2005, 26, 589-598.
    60. Xu J., Y. Yuan, B. Shan, J. Shen, S. Lin, Ozone-induced grafting phosphorylcholine polymer onto silicone film grafting 2-methacryloyloxyethyl phosphorylcholine onto silicone film to improve hemocompatibility. Colloids and Surfaces B: Biointerfaces, 2003, 30, 215-223.
    61. Krsko P., M, Libera, Biointeractive hydrogels. Materialtoday, 2005, 8, 36-44.
    62. Vermette P., L. Meagher, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces, 2003, 28, 153-198.
    63. Ratner B. D., “Surface properties and surface characterization of materials" In Biomaterials Science. An introduction to materials in medicine; Ratner B. D., A. S. Hoffman, F. J. Schoen, J. E. Lemons, Eds.; Elsevier, Academic Press: San Diego, CA, 2004, 40-59.
    64. Higuchi A., N. Aoki, T. Yamamoto, T. Miyazaki, H. Fukushima, T. M. Tak, S. Jyujyoji, S. Egashira, Y. Matsuoka, S. H. Natori, Temperature-induced cell detachment on immobilized pluronic surface. Journal of Biomedical Materials Research Part A, 2006, 79, 380-392.
    65. Ishihara K., K. Fukumoto, Y. Iwasaki, N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials, 1999, 20, 1553-1559.
    66. Shen L. Q., Z. K. Xu, Z. M. Liu, Y. Y. Xu, Ultrafiltration hollow fiber membranes of sulfonated polyetherimide/polyetherimide blends: preparation, morphologies and anti-fouling properties. Journal of Membrane Science, 2003, 218, 279-293.
    67. Rahimpour A., S. S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties. Journal of Membrane Science, 2007, 305, 299-312.
    68. Nimeri G., B. Lassen, C. G. Golander, U. Nilsson, H. Elwing, Adsorption of fibrinogen and some other proteins from blood plasma at a variety of solid surfaces. Journal of Biomaterial Science, Polymer Edition, 1994, 6, 573-583.
    69. Knetsch M. L. W., Y. B. J. Aldenhoff, L. H. Koole, The effect of high-density-lipoprotein on thrombus formation on and endothelial cell attachement to biomaterial surfaces. Biomaterials, 2006, 27, 2813-2819.
    70. 杉山開一朗, “кю①ЯШヱヵ—ЬрэЗюо⑦膜ソУ⑦еヱ質吸着評価シ血液適合性.”博士論文, 日本成蹊大學工學研究所, 2003.
    71. Toscano A., M. M. Santore, Fibrinogen Adsorption on Three Silica-Based Surfaces: Conformation and Kinetics. Langmuir, 2006, 22, 2588-2597.
    72. Tunc S., M. F. Maitz, G. Steiner, L. V´azquez, M. T. Pham, R. Salzer, In situ conformational analysis of fibrinogen adsorbed on Si surfaces. Colloids and Surfaces B: Biointerfaces, 2005, 42, 219-225.
    73. Chang Y., Y. J. Shih, R. C. Ruaan, A. Higuchi, W. Y. Chen, J. Y. Lai, Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility. Journal of Membrane Science, 2008, 309, 165-174.
    74. Vroman L., Finding seconds count after contact with blood (and that is all I did). Colloids and Surfaces B: Biointerfaces, 2008, 62, 1-4.
    75. Green R. J., M. C. Davies, C. J. Roberts, S. J. B. Tendler, Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials, 1999, 20, 385-391.
    Advisor
  • Wen-yih Chen(陳文逸)
  • Files
  • 953204015.pdf
  • approve in 1 year
    Date of Submission 2008-07-23

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.