Title page for 953202023


[Back to Results | New Search]

Student Number 953202023
Author Hung-Dian Shiau(蕭弘典)
Author's Email Address 953202023@cc.ncu.edu.tw
Statistics This thesis had been viewed 1545 times. Download 974 times.
Department Civil Engineering
Year 2008
Semester 1
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Measuring thermal conductivity of transversely isotropic rock and error analysis
Date of Defense 2008-11-05
Page Count 114
Keyword
  • Error Propagation
  • Moving Average
  • Thermal Conductivity
  • Thermal Probe Method
  • Transversely Isotropic
  • Abstract The subject of this research is using thermal probe method to measure the thermal conductivity of transversely isotropic rock while P-wave velocity at different angles is also measured. In order to improve the precision of thermal probe method, error propagation theory is used to estimate the standard deviation of measured results. A refined weighted moving average algorithm is applied to reduce the effect of noise from measuring.
    The value of standard deviation can be used to optimize experimental parameter for thermal probe method. For thermal conductivity, measurement noise affects the most, up to 59% rising of the standard deviation. Using a refined weighted moving average algorithm to process experimental data, the affection on the noise from measuring will reduce to 9%. The result of refined weighted moving average algorithm shows the effect of measurement noise is larger for a sample with higher thermal conductivity than a sample with lower thermal conductivity. Therefore, if a sample has higher thermal conductivity, the affection on noise must be reduced in order to maintain accuracy.
    For the measurement on transversely isotropic rock in the study, the thermal conductivity of parallel isotropic plane is about twice of vertical isotropic plane in transversely isotropic rock. The maximum P-wave velocity is more than twice of the minimum P-wave velocity. On measurements of a set of orthogonal directions, the ratio of thermal conductivity is almost the same with the ratio of P-wave velocity.
    Table of Content 目 錄
    第1章緒論1
    1.1研究背景1
    1.2研究目的1
    1.3研究方法1
    1.4論文架構2
    1.5論文流程圖3
    第2章文獻回顧4
    2.1岩石異向性4
    2.1.1定義4
    2.1.2成因4
    2.1.3異向性岩石的力學行為5
    2.1.4橫向等向性岩石7
    2.2基本熱學8
    2.3熱傳導係數的定義9
    2.4量測熱傳導係數的方法10
    2.4.1穩態熱傳導係數量測方法10
    2.4.2暫態熱傳導係數量測方法11
    2.4.3熱探針法、分割棒法、與暫態平面法之比較15
    2.4.4穩態及暫態量測熱傳導係數方法比較17
    2.5異向性岩石熱傳導係數18
    2.6影響岩石熱傳導係數的性質20
    2.7與熱傳導係數相關性質23
    2.8橫向等向性岩石熱傳導係數25
    2.9含水量與超音波波速關係29
    2.10誤差分析30
    2.10.1量測誤差30
    2.10.2誤差處理31
    2.11實驗雜訊32
    2.11.1濾除雜訊-簡易移動平均32
    2.11.2濾除雜訊-加權移動平均33
    第3章實驗規劃34
    3.1試驗材料34
    3.2熱傳導係數量測37
    3.2.1實驗儀器37
    3.3橫向等向性岩石熱傳導係數41
    3.3.1試驗儀器41
    3.3.2試驗步驟42
    3.4含水量對熱傳導係數的影響試驗45
    3.4.1試驗步驟45
    3.5誤差分析46
    3.5.1計算誤差46
    3.5.2參數設計-電壓47
    3.5.3參數設計-溫差及時間間隔47
    3.6熱探針法的雜訊48
    3.6.1雜訊大小48
    3.6.2雜訊濾除49
    3.6.3雜訊濾除改正-改良加權移動平均50
    3.6.4模擬數據50
    3.7超音波波速試驗52
    3.7.1實驗儀器52
    3.7.2試驗步驟52
    3.8水泥砂漿棒飽和度與超音波波速試驗54
    3.8.1實驗步驟:54
    第4章結果與討論55
    4.1預估誤差55
    4.1.1儀器誤差55
    4.1.2熱傳導係數誤差58
    4.2參數設計-電壓61
    4.3參數設計-溫差及時間間隔64
    4.4實驗雜訊73
    4.4.1雜訊影響-四線段驗證73
    4.4.2雜訊濾除76
    4.4.3設定MWS80
    4.5雜訊濾除驗證82
    4.6模擬數據驗證83
    4.6.1權重形狀驗證83
    4.6.2模擬數據雜訊濾除驗證88
    4.7含水量對熱傳導係數影響91
    4.8橫向等向性岩石熱傳導係數93
    4.9飽和度對超音波波速影響95
    4.10橫向等向性岩石的超音波波速99
    4.11橫向等向性岩石熱傳導係數與超音波波速相關性107
    第5章結論與建議109
    5.1結論109
    5.2建議110
    Reference 田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(II)」,行政院原子能委員會委託研究計畫研究報告,台北(2002)。
    田永銘、朱正安、張家銘、鐘富誠、陳婕,「熱探針量測法應用於大地材料之適用性」,2006岩盤工程研討會論文集,台南,第669-678頁(2006)。
    朱正安、張大猷、田永銘,「緩衝材料熱傳導係數之量測與預測模式」,2004岩盤工程研討會論文集,第694-701頁,台北(2004)。
    林哲彥、李英豪、朱蘊鑛,統計學,東華書局,台北市(2005)。
    陳弘馨,Excel統計資料分析實務-樞紐分析/OLAP/Access整合應用,文魁資訊股份有限公司,台北市(2003)。
    陳可杰、黃聯海、李宗倚、李婉怡、陳益昌,統計學,滄海書局,台中市(2003)。
    張大猷,「熱探針連續量測法應用於緩衝材料熱傳導係數之量測與分析」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
    張詩岳,「足尺寸混凝土構件的澆置品質與非破壞檢測」,碩士論文,朝陽科技大學營建工程研究所,霧峰(2004)。
    張家銘,「以熱探針法量測大地材料熱傳導係數之適用性」,碩士論文,中央大學土木工程學系,中壢(2006)。
    游忠霖,「以ABAQUS探討熱探針法之試驗變因」,碩士論文,中央大學土木工程學系,中壢(2007)。
    楊武智,感測器與數位信號處理,全華科技圖書股份有限公司,台北市(1999)。
    葉怡成,測量學-21世紀觀點,東華書局股份有限公司,台北市(2007)。
    Amadei, D., Rock Anisotropy and the Theory of Stress Measurement, Springer-Verlag, Heidelberg (1983).
    ASTM, “ASTM C177 : Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the GUARDED-Hot-Plate Apparatus,” Annual Book of ASTM Standards, Vol.1630, (2004).
    ASTM, “ASTM C518 : Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus,” Annual Book of ASTM Standards, Vol.0406, (2004).
    ASTM, “ASTM E1225 : Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique,” Annual Book of ASTM Standards, Vol.1402, (2004).
    ASTM, “ASTM D5334 : Standard Test Method for Determination of Thermal Conductivity of Soil and Rock by Thermal Needle Probe Procedure,” Annual Book of ASTM Standards, Vol. 0409(2000).
    Barla, G. Rock anisotropy - Theory and laboratory testing. In: Müller L., editor. Rock mechanics, pp. 131–169(1974).
    Burkhardt, H., Honarmand, H., and Pribnow, D., “Test measurements with a new thermal conductivity borehole tool,” Tectonophysics, Vol. 244, pp. 161-165 (1995).
    Bouguerra, A., Laurent, J. P., Goual, M. S., and Queneudec, M., “Measurement of the thermal conductivity of solid aggregates using the transient plane source technique, ” Journal of Physics D: Applied Physics, Vol. 30, No. 20, pp. 2900-2904 (1997).
    Clauser, C., and Huenges, E., “Thermal conductivity of rock and minerals In:AGU Reference Shelf 3 Rock Physics and Phase Relations. ” A Handbook of Physical Constants. pp. 105-125 (1995).
    Çanakcia, H., Demirboğa, R., Karakoç, M.B., and Şirin, O., “Thermal Conductivity of limestone from Gaziantep (Turkey),” Building and Environment, Vol. 42, No. 24, pp. 1777-1782 (2007).
    Farouki, O. T., “Thermal Properties of Soils, Series on Rock and Soil Mechanics, ” Vol.11, Trans Tech Publications, Germany (1986).
    Grubbe, K., Haenel, R., and Zoth, G. “Determination of the vertical component of thermal conductivity by line source methods,” Zeitschrift für Geologie und Paläontologie, Teil I H (1/2), pp. 49-56 (1983).
    Gustavsson, J.S., Gustavsson, M., Gustafsson, S.E., “On the use of the hot disk thermal constants analyser for measuring the thermal conductivity of thin samples of electrically insulating materials,” Proc. 24th Int. Thermal Conductivity Conf., Pittsburgh, USA (1997).
    Horai, K., and Baldridge, W. S., “Thermal conductivity of nineteen igneous rocks, I: Application of the needle probe method to the measurement of the thermal conductivity of rock,” Phys. Earth Planet. Interiors, Vol. 5, pp. 151-156(1971).
    Huenges, E., Burkhardt, H., Erbas, K., “Thermal conductivity profile of the KTB pilot corehole,” Scientific Drilling, Vol. 1, pp.224-230(1990).
    Incropera, F. P., and DeWitt, D. P., Fundamentals of Heat and Mass Transfer, 4th Ed., John Wiley & Sons, Inc., New York, pp. 44-55 (1996).
    Krishnaiah, S., Singh, D. N., and Jadhav, G. N., “A methodology for determining thermal properties of rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 5, pp. 887-882(2004).
    Krhraman, S.,“The correlations between the saturated and dry P-wave welocity of rocks,” Ultrasonics, Vol. 46, pp. 341-348(2007).
    Mitchell, J. K., and Kao, T. C., “Measurement of soil thermal resistivity,” Journal of the Geotechnical Engineering Division, Vol. 104, pp. 1307-1320 (1978).
    Özkahraman, H. T., Selver, R., and Isik, E. C., “Determination of the thermal conductivity of rock from P-wave velocity,” Internal Journal of Rock Mechanics&Mining Sciences, Vol. 41, No. 4, pp. 703-708 (2004).
    Popov, Y. A., Pribnow, D. F. C., Sass, J. H., Williams, C. F., and Burkhardt, H., “Characterization of rock thermal conductivity by high-resolution optical scanning,” Geothermics, Vol. 28, No. 2, pp. 253-276(1999).
    Pribnow, D., Sass, J.H., “Determination of thermal conductivity from deep boreholes,” Journal of Geophysical Research, Vol. 100, pp. 9981-9994 (1995).
    Popov, Y.A., Semionov, V.G.., Korosteliov, V.M., Berezin, V.V., “Non contact evaluation of thermal conductivity of rocks with the aid of a mobile heat source,” Izvestiya, Physics of the Solid Earth, Vol. 19, pp. 563.567(1983).
    Zhuang, Y., Chen, L., Wang, X. S., and Lian, J., “A weighted moving average-based approach for cleaning sensor data,” International Conference on Distributed Computing Systems, IEEE, (2007).
    Advisor
  • Yong-Ming Tien(田永銘)
  • Files
  • 953202023.pdf
  • approve immediately
    Date of Submission 2008-12-15

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.