Title page for 952206068


[Back to Results | New Search]

Student Number 952206068
Author Ta-Wei Ma(馬大為)
Author's Email Address No Public.
Statistics This thesis had been viewed 917 times. Download 686 times.
Department Optics and Photonics
Year 2009
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Effect of Thermal Annealing on InSb Grown by MBE on Si substrate
Date of Defense 2010-06-11
Page Count 51
Keyword
  • InSb
  • Scattering mechanism
  • Semiconductor
  • Thermal annealing
  • Abstract In this research, we investigate the electrical and structural properties of ultrathin InSb films grown on Si substrate by molecular beam epitaxy. The effects of thermal annealing on the ultrathin InSb films are also examined. A polycrystalline scattering model is used to explain the transport properties of the as-grown samples and annealed samples.
    Growth temperature is an essential growth parameter for high quality InSb films, especially when grown on lattice mismatched Si substrates. A two-step growth method is adopted to obtain InSb films with good material quality and smooth surface. The films are subject to thermal annealing at different temperature and durations.
    It is found that the InSb films prepared in this work are of polycrystalline nature. Grain boundary scattering is therefore the dominant carrier scattering mechanism, which limits the electron mobility of these InSb films. After thermal annealing, the increase of grain size and reduction of grain boundary result in improved electron mobility. An optimized annealing condition, i.e. 500 oC for 5 minutes, electron mobility is increased by as much as three times.
    Table of Content 中文摘要..................................................................................................... I
    英文摘要....................................................................................................II
    目錄.......................................................................................................... III
    圖目錄....................................................................................................... V
    表目錄.....................................................................................................VII
    第一章 導論
    1.1 前言.......................................................................................... 1
    1.2 成長於高度晶格不匹配的銻化銦材料之發展..................... 3
    1.3 研究架構................................................................................. 6
    第二章 試片製備
    2.1 成長溫度變化與薄膜特性探討............................................. 7
    2.2 兩階段成長........................................................................... 14
    第三章 熱退火處理對於銻化銦薄膜之特性變化
    3.1 前言........................................................................................ 18
    3.2 熱退火結果與分析............................................................... 20
    第四章 薄膜內部散射機制分析
    4.1 薄膜散射機制之擬合與分析............................................... 35
    4.2 Levinson 模型........................................................................ 40
    第五章 總結.......................................................................................... 46
    參考文獻.................................................................................................. 49
    Reference [1]J.-I. Chyi, S. Kalem, N. S. Kumar, C. W. Litton and H. Morkoc, ”Growth of InSb and InAs1-xSbx on GaAs by molecular beam epitaxy”, Appl. phys. Lett., 53(12), pp1092~1094, 1988
    [2]J.-I. Chyi, D. Biswas, S. V. lyer, N. S. Kumar and H. Morkoc, ”Molecular beam epitaxial growth and characterization of InSb on Si”, Appl. Phys. Lett., 54(11), pp1016~1018, 1989
    [3]K. Kanisawa, H. Yamaguchi and Y. Hirayama, ”Two-dimensional growth of InSb thin films on GaAs(111)A substrates”, Appl. Phys. Lett., 76(5), pp589~591, 2000
    [4]K. Murata, N.B. Ahmad, Y. Tamura, M. Mori, C. Tatsuyama and T. Tambo, “Low-temperature growth of InSb(111) on Si(111) substrate”, J. Crystal Growth, 301-302, pp203~206, 2007
    [5]X. Weng, N. G. Rudawski, P. T. Wang and R. S.Goldman, “Effects of buffer layers on the structural and electronic properties on InSb films”, J. Appl. Phys., 97,pp 043713-1~043713-6, 2005
    [6]M. Mori, N. Fujimoto, N. Akae, K. Uotani, T. Tambo and C. Tatsuyama, “Heteroepitaxy of InSb films grown on a Si(001) substrate with AlSb buffer layer”, J. Crystal Growth, 286, pp218~222, 2006
    [7]Masahiro Tomisu, Narumi Inoue and Yoshizumi Yasuoka, “Annealing effect of vacuum evaporated InSb thin films”, Vacuum, 49(3), pp239~242, 1996
    [8]Y. Yasuoka, T. Okuda and N. Inoue, “n-InSb Point Contact Warm    Carrier Infrared Laser Detectors”, Jpn. J. Appl. Phys., 27, ppL886~L888, 1988
    [9]G. C. Osbourn, “InAsSb strained-layer superlattices for long wavelength detector applications”, J. Vac. Sci. Technol., B2, pp176~178, 1984
    [10]M. Mori, D. M. Li, M. Yamazaki, T. Tambo, H. Uebe and C. Tatsuyama , “Heteroepitaxial growth of InSb on Si(001) surface via Ge buffer layers”, Appl. Surf. Sci., 104-105, pp563~569, 1996
    [11]Masafumi Yamaguchi, Akio Yamamoto, Masami Tachikawa, Yoshio Itoh, and Mitsuru Sugo, “Defect reduction effects in GaAs on Si substrates by thermal annealing”, Appl. Phys. Lett., 53(23), pp2293~2295, 1988
    [12]Robert E. and Reed Hill, “Physical Metallurgy Principles (3rd)”, New York: Van Nostrand, pp227~269, 1972
    [13]W. A. Soer, “Interaction between Dislocations and Grain Boundary”, University of Press. Groningen, pp5~13, 2006
    [14]S. O. Kasap, “Principles of Electronic Materials and Devices” (3rd), McGraw Hill, pp156~159, 2006
    [15]A. Medvid, L. L. Fedorenko and V. Snitka, “The Mechanism of Generation of Donor Centres in p-InSb by Laser Radiation”, Appl. Surf. Sci., 142, pp280~285, 1990
    [16]J.-I. Chyi, “Molecular beam epitaxial growth and characterization of Indium Antimonide on Gallum Arsenide”, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, pp 41~43, 1990
    [17]Jasprit Singh, “Electronic and Optoelectronic Properties of Semiconductor Structure”, Cambridge, pp181~263, 2003
    [18]R. Fischer, H. Morkoc, D. A. Neumann, H. Zabel, C. Choi, N. O. Otsuka, M. Longerbone and L. P. Ericksen, “Material properties of high-quality GaAs epitaxial layers grown on Si substrates”, J. Appl. Phys., 60(5), pp1640~1647, 1986
    [19]K. Adomi, S. Strite, and H. Morkoc, “Antiphase-domain-free GaAs grown on pseudomorphic Si(100) surfaces by molecular beam epitaxy”, Appl. Phys. Lett., 56(5), pp469~471, 1990
    [20]A. Georgakilas, P. Panayotatos, J. Stoemenos, J.-L. Mourrain, and A. Christou, “Achievements and limitations in optimized GaAs films grown on Si by molecular-beam epitaxy”, J. Appl. Phys., 71(6), pp2679~2701, 1992
    [21]K. Hansen, E. Peiner, G.-P. Tang, A. Bartels, and A. Schlachetzki, “Scattering mechanisms and defects in InP epitaxially grown on (001) Si substrate”, J. Appl. Phys., 76(8), pp4705~4712, 1994
    [22]Sadao Adachi, “Properties of Group-IV, III-V and II-VI Semiconductors”, Wiley, pp319~320, 2005
    [23]Nicky Chau-Chun Lu, Levy Gerzberg, Chih-Yuan Lu and James D. Meindl, “A Conduction Model for Semiconductor Grain Boundary Semiconductor Barriers in Polycrystalline-Silicon Films”, IEEE Trans. Electron Devices, ED-30(2), pp137~149, 1983
    [24]T. I. Kamins, “Hall Mobility in Chemically Deposited Polycrystalline Silicon”, J. Appl. Phys., 42(11), pp4357~4365, 1971
    [25]Teruo Katoh, “Temperature-Independent Carrier Mobility in Large-Grain Poly-Si Transistors”, IEEE Trans. Electron Devices, 41(9), pp1672~1674, 1994
    [26]Yoshihiro Morimoto, Yushi Jinno, Kyoko Hirai, Hidenori Ogata, Tutomu Yamada, and Kiyoshi Yoneda, ”Influence of the Grain Boundaries and Intragatin Defects on the Performance of Poly-Si Thin Film Transistors”, J. Electrochem. Soc., 144(7), pp2495~2501, 1997
    Advisor
  • Jen-Inn Chyi(綦振瀛)
  • Files
  • 952206068.pdf
  • approve immediately
    Date of Submission 2010-07-05

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.