Title page for 952203001


[Back to Results | New Search]

Student Number 952203001
Author Seak-Hong Kam(甘錫鴻)
Author's Email Address No Public.
Statistics This thesis had been viewed 1996 times. Download 521 times.
Department Chemistry
Year 2007
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title 1. Assessment of Removal Efficiency of Perfluorocompounds for Local Scrubbers in Semiconductor Industry by Chromatographic Methods
2. Intercomparison of Background Carbon Monoxide and Its Concentration Calibration
Date of Defense 2008-07-02
Page Count 106
Keyword
  • C2F6
  • C3F8
  • carbon monoxide
  • CF4
  • CO
  • DRE
  • FTIR
  • Gas chromatography
  • GC
  • LABS
  • MS 5A
  • NDIR
  • NF3
  • Perfluorocompounds
  • PFC
  • Porapak Q
  • QMS
  • RGA
  • scrubber
  • SF6
  • VURF
  • VUV-RF
  • Abstract Man-made perflurorcompounds (PFCs) are very potent green house gases, which have been used in large quantity by semiconductor and LCD industries in Taiwan. Usually these chemicals are to be removed by local scrubbers to prevent them from direct emission into the atmosphere. Conventionally, the assessment methods for various types of local scrubbers rely heavily on Fourier Transform Infrared Spectrometry (FT-IR) coupled with Quadruple Mass Spectrometry (QMS). Major drawbacks of these techniques stem from their high cost and high leaning barrier for the industry. In light of these obstacles, this research attempted to develop an assessment technique based on Gas Chromatography (GC), employing packed column, thermal conductivity detection, and heart-cut techniques. The developed system was deployed in a semiconductor fabrication plant to assess the destruction and removal efficiency (DRE) of 3 types of local scrubbers. Both in-situ on-site and flask sampling were adopted in the DRE assessment. It was found that the combustion type of local scrubber (DAS brand) exhibited over 90% DRE for C3F8, whereas the electric-thermal type had lower DRE of 45% and 15% for the CDO and KT brand, respectively. This research also developed a novel method to determine dilution factor by using helium as a tracer. The re-assessed DRE for DAS after adoption of He based dilution factor was still over 90%, consistent with the earlier value derived by flow rate calculation.
      The second topic of this research addresses the calibration and inter-comparison of carbon monoxide (CO) for background measurements. Five working standards in the range between 20 and 250 ppbv were accurately calibrated by 4 NOAA primary standards via a highly linear and sensitive instrument, i.e., vacuum-UV resonance fluorescence (VUV-RF). The 5 calibrated working standards were brought to the Lulin Atmospheric Baseline Station (LABS) for calibrating two CO instruments of reduced gas analyzer (RGA) and non-dispersive infrared (NDIR). Intercomparison between VUV-RF, RGA, and NDIR were carried out continuously for a period of 7 weeks. The correlation correlations (R2) for VUV-RF with RGA and NDIR are 0.968 and 0.966, respectively, whereas the R2 between NDIR and RGA is 0.983.
    Table of Content 中文摘要I
    英文摘要III
    謝誌V
    目錄VI
    表目錄XIII
    第1章 前言1
    1-1 全氟化合物的大氣角色1
    1-2 溫室效應2
    1-3 溫室氣體6
    1-4 全氟化合物及其工業排放與減量11
    1-4-1 製鋁工業14
    1-4-2 製鎂工業16
    1-4-3 光電半導體工業17
    1-5 PFCs分析方法回顧24
    1-6 研究動機26
    第2章 全氟化合物分析系統之建立28
    2-1 全氟化合物分析系統設計28
    2-1-1 進樣系統設計28
    2-1-1 a 進樣迴圈壓力控制30
    2-1-1 b 進樣迴圈溫度之控制31
    2-1-2 熱傳導偵測器33
    2-1-3 時序控制軟體35
    2-1-4 層析管柱之選擇35
    2-1-5 雙管柱切換層析系統之建立42
    2-1-5 a 管柱(烘箱)初始溫度對C2F6及SF6分離之影響45
    2-1-5 b雙管柱切換系統切點之選擇47
    2-1-5 c系統穩定度51
    2-1-5 d 分析系統之線性51
    2-2 結果與討論57
    2-2-1 初級洗滌器移除效率之量測57
    2-2-2 以追踪劑(Tracer)檢驗初級洗滌器的移除效率59
    第3章 小結66
    PFCs參考資料:67
    第4章 一氧化碳70
    4-1 一氧化碳的大氣角色70
    4-2 一氧化碳分析方法回顧74
    4-3 研究動機78
    第5章 一氧化碳分析系統79
    5-1 真空紫外共振螢光光譜儀(VUV-RF)79
    5-1-1 VUV-RF偵測原理79
    5-1-2 VUV-RF之校正系統80
    5-2 非分散式紅外光譜儀82
    5-2-1 NDIR偵測原理82
    5-2-2 NDIR數據擷取以及訊號處理83
    5-3 氧化汞還原氣體摸組84
    5-3-1 汞還原偵測器之偵測原理84
    5-3-2 RGA訊號擷取及數據處理87
    5-4 結果與討論89
    5-4-1 VUV-RF系統檢量線製作與工作標準品校正89
    5-4-2 RGA系統檢量線的製作91
    5-5 NDIR與VUV-RF在室內高濃度環境下之平行比對92
    5-6 三儀器間低濃度環境下之平行比對94
    5-7 LABS CO監測結果95
    第6章 小結102
    第7章 論文總結103
    CO參考資料:105
    Reference PFC:
    [1] IPCC, Intergovernmental Panel on Climate Change Fourth Assessment Report. Chapter 1: Historical overview of climate change science. Intergovernmental Panel on Climate Change, Page 97, 2007.
    [2] IPCC, Intergovernmental Panel on Climate Change Fourth Assessment Report. Summary for Policymakers. Intergovernmental Panel on Climate Change, Page 6, 2007.
    [3] IPCC, Intergovernmental Panel on Climate Change Third Assessment Report. Chapter 6: Radiative Forcing of Climate Change. Intergovernmental Panel on Climate Change, Page 353,2001.
    [4] IPCC, Intergovernmental Panel on Climate Change Third Assessment Report. Chapter 6: Radiative Forcing of Climate Change. Intergovernmental Panel on Climate Change ,Page 385, 2001.
    [5] National Oceanic and Atmospheric Administration (NOAA), http://www.esrl.noaa.gov/gmd/ccgg/iadv/
    [6] IPCC, Intergovernmental Panel on Climate Change Fourth Assessment Report. Chapter 2 Changes in Atmospheric Constituents and in Radiative Forcing. Intergovernmental Panel on Climate Change, Page 131, 2007.
    [7] Colin, B.; Michael, C. Environmental Chemistry 3th. Page 32
    [8] Advanced Global Atmospheric Gases Experiment (AGAGE),
    http://agage.eas.gatech.edu/data.htm
    [9] Harnisch, J.; Borchers, R.; Fabian, P.; Gaggeler, H.W.; Schotterer, U. Effect of natural tetrafluoromethane. Nature 1996, 384, 32.
    [10] Khalil, K.; Aslam, M.; Rasmussen, R.A.; Culbertson, J.A.; Prins, J. M.; Grimsrud, E.P.; Shearer, M.J. Atmospheric perfluorocarbons. Environ. Sci. Technol. 2003, 37, 4358-4361.
    [11] Worton, D.R.; Sturges, W.T.; Gohar, L.K.; Shine, K.P.; Martinerie, P.; Oram, D.E.; Humphrey, S.P.; Begley, P.; Gunn, L.; Barnola, J.M.; Schwander, J.; Mulvaney, R. Atmospheric trends and radiative forcings of CF4 and C2F6 inferred from firn air. Environ. Sci. Technol. 2007, 41, 2184-2189.
    [12] IPCC, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. PFC emissions from primary aluminium production. Page 200
    [13] International Aluminium Institute(IAI), International Aluminium Industry's Perfluorocarbon Gas Emissions Reduction Programme, Result of the 2005 Anode Effect Survey, 2007.
    [14]International Magnesium Association's, Primary Magnesium Production 2006.
    [15]US EPA, the International Magnesium Association (IMA), China Magnesium Association (CMA), and Japan Magnesium Association (JMA), The Alternatives to SF6 for Magnesium Melt Protection, 2006.
    [16]US EPA, http://www.epa.gov/magnesium-sf6/accomplishments.html
    [17] 李灝銘, 全氟化物溫室效應氣體減量技術評析, 2006.
    [18] Washington, D.C.; London, U.K.; Protocol for Measurement of tetrafluoromethane(CF4) and Hexafluoroethane(C2F6) Emission from Primary Aluminum Production, 2003
    [19] Zazzera, L.; Reagen, W.; Cheng, A.; Infrared study of process emissions during C3F8/O2 plasma cleaning of plasma enhanced chemical vapor deposition chambers. J. frlectrocflem. Soc. 1997, 144, 3597~3601.
    [20] Wofford, B.A.; Jackson, M.W.; Hartz, C.; Bevan, J.W. Surface wave plasma abatement of CHF3 and CF4 containing semiconductor process emissions. Environ. Sci. Technol. 1999, 33(11), 1892-1897.
    [21] Clemons, C.A.; Altshuller, A.P. Responses of electron-capture detector to halogenated substances. Anal. Chem. 1966, 38(1), 133-136.
    [22]National Oceanic and Atmospheric Administration (NOAA),
    http://www.esrl.noaa.gov/gmd/hats/insitu/insitu.html
    [23] Bright, R.N.; Matula, R.A. Gas chromatographic separation of low molecular weight fluorocarbons. J. Chromatogr. 1968, 35, 217~222.
    [24] Rogers, R.; Born, G.; Kessler, W.; Christian, J. Pyrolysis-gas chromatography of perfluoro-n-pentane. Anal. Chem. 1973, 45(3), 567-570.
    [25] Andrawes, F.F.; Gibson, E.K.; Bafus, D.A.; Analysis of low molecular weight perfluoroalkanes by gas chromatography with helium ionization detection. Anal. Chem. 1980, 52(8), 1377-1379.
    [26] Harnisch, J.; Borchers, R.; Fabian, P.; Maiss, M. Tropospheric trends for CF4 and C2F6 since 1982 derived from SF6 dated stratospheric air. Geophys. Res. Lett. 1996, 23, 1099-1102.
    [27] Wang, J.L.; Kuo, S.R.; Ma, S.S.; Chen, T.T. Construction of a low-cost automated chromatographic system for measurement of ambient methane Anal. Chem. Acta., 2001,448, 187-193.
    CO:
    [1] Smith, K.R. Biofuels, air pollution, and health: a global review. Kluwer Academic Pub, 1987.
    [2] U.S. Environmental Protection Agency , http://www.epa.gov/air/urbanair/6poll.html
    [3] NOAA/ESRL/GMD, http://www.esrl.noaa.gov/gmd/ccgg/
    [4] Fishman, J.; Seiler, W. Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone budget. J. Geophys. Res. 1983, 88, 3662-3670.
    [5] Cicerone, R.J. How has the Atmospheric Concentration of CO changed? The Changing Atmosphere, edited by F.S. Rowland and I.S.A. Isaksen, 49-61, 1988.
    [6] Seinfeld, J.H., Atmospheric chemistry and physics of air pollution, 1986.
    [7] http://web.eos.ucar.edu/mopitt/
    [8] Edwards, D.P.; Pe´tron, G.; Novelli, P.C.; Emmons, L.K.; Gille, J.C.; Drummond, J.R. Southern Hemisphere carbon monoxide interannual variability observed by Terra/Measurement of Pollution in the Troposphere (MOPITT). J. Geophys. Res. 2006, 111, 1~9.
    [9] Levy, H. Normal atmosphere: Large radical and formaldehyde predicted, Science 1971, 173, 141-143.
    [10] Logan, J.A.; Prather, M.J.; Wofsy, S.C.; McElroy, M.B. Tropospheric chemistry: A global perspective. J. Geophys. Res. 1981, 86, 7210-7254.
    [11] Thompson, A.M. The oxidizing capacity of the earth’s atmosphere: Probable past and future changes. Science 1992, 256, 1157-1165.
    [12] Cassidy, D.T.; Reid, J. Atmospheric pressure monitoring of trace gases using tunable diode lasers. Appl. Opt. 1982, 21, 1185-1190.
    [13] Sachse, G.W.; Hill, G.F. Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique. J. Geophys. Res. 1987, 92, 2071-2081.
    [14] NIEA, 空氣中一氧化碳自動檢驗方法, 環署檢字第43007 號公告, 1992.
    [15] Smith, R.N.; Swinehart, J.; Lesnini, D.G. Chromatographic analysis of gas mixtures containing nitrogen, nitrous oxide, nitric oxide, carbon monoxide, and carbon dioxide. Anal. Chem. 1958, 30, 1217-1218.
    [16] Porter, K.; Volman, D.H. Flame ionization detection of carbon monoxide for gas chromatographic analysis. Anal. Chem. 1962, 34, 748-749.
    [17] McCullough, J.D.; Crane, R.A.; Beckman, A.O. Detection of carbon monoxide in air by use of red mercuric oxide. Anal. Chem. 1947, 19, 999-1002.
    [18] Novelli, P.C. An internally consistent set of globally distributed atmospheric carbon monoxide mixing ratios developed using results from an intercomparison of measurements. J. Geophys. Res., 1998, 103, 19285-19293.
    [19] Volz, A.; Kley, D. A resonance-fluorescence instrument for the In-situ measurement of atmospheric carbon monoxide. Journal of Atmospheric Chemistry 1985, 2, 345~357.
    [20] Gerbig, C.; Kley, D.; Volz-Thomas, A.; Kent, J.; Dewery, K.; McKenna, D.S. Fast response resonance fluorescence CO measurements aboard the C-130: instrument characterization and measurement made during North Atlantic Regional Experiment 1993. J. Geophys. Res. 1996, 101, 29229~29238.
    [21] Gerbig, C.; Schmitgen, S.; Kley, D.; Volz-Thomas, A.; Dewey, K.; Haaks, D. An improved fast-response vacuum-UV resonance fluorescence CO instrument, J. Geophys. Res. 1999, 104, 1699~1704.
    [22] Takegawa, N.; Kita, K.; Kondo, Y.; Matsumi, Y.; Parrish, D.D.; Holloway, J.S.; Koike, M.; Miyazaki, Y.; Toriyama, N.; Kawakami, S.; Ogawa, T. Airborne vacuum ultraviolet resonance fluorescence instrument for in situ measurement of CO. J. Geophys. Res. 2001, 106, 24237~24244.
    Advisor
  • Jia-Lin Wang(王家麟)
  • Files
  • 952203001.pdf
  • approve immediately
    Date of Submission 2008-07-17

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.