Title page for 952201028


[Back to Results | New Search]

Student Number 952201028
Author Shih-Chao Kao(高仕超)
Author's Email Address 952201028@cc.ncu.edu.tw
Statistics This thesis had been viewed 1472 times. Download 630 times.
Department Mathematics
Year 2007
Semester 2
Degree Master
Type of Document Master's Thesis
Language English
Title Some Residual-Free Bubble Enrichment Least-Squares Finite Element Method for the Convection-Diffusion Equation
Date of Defense 2008-06-26
Page Count 31
Keyword
  • convection-diffusion equation
  • finite element method
  • least-squares
  • residual-free bubble
  • Abstract In this thesis, we formulate the least-squares finite element method using piececewise linears to solve the convection-diffusion equation which is convection-dominated and we find that the solution is diffusive and the classical mesh refinement for the least-squares finite element method is not an economical method. Then we use the
    residual-free bubble method to enrich the least-squares finite element method. This is a new application of residual-free bubble method and we solve some test problems. The numerical results show that the residual-feee bubble method for the least-squares finite element method has a good effect of enrichment。
    Table of Content 中文摘要.................................................i
    英文摘要................................................ii
    致謝詞.................................................iii
    目錄....................................................iv
    圖目錄...................................................v
    表目錄..................................................vi
    1.Introduction...........................................2
    2. The LSFEM for the convection-diffusion equation.......4
    3. The LSFEM enriched by a residual-free bubble method...8
    3.1. Analytical approach............................... 13
    3.2. Numerical approach.................................15
    4. Numerical results....................................16
    5. Conclusion...........................................29
    Reference...............................................29
    Reference [1] B.N. Jiang, and L.A. Povinelli, Least-Squares Finite element method for fluid dynamics, Comput. Methods. Appl. Mech. Engrg. 81 (1990) 13-37.
    [2] F. Brezzi, M.O. Bristeau, L.P. Franca, M. Mallet, and G. Roge, A relationship between stabilized finite element methods and the Galerkin method with bubble functions,Comput. Methods Appl. Mech. Engrg. 96 (1992) 117-129.
    [3] L.P. Franca, S.L. Frey, and T.J.R Hughes, Stabilized-finite element methods: I. Application to advective-diffusive model, Comput. Methods Appl. Mech. Engrg.
    95 (1992) 253-276.
    [4] F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems,Math.Models Methods Appl., 4 (1994)
    571-587.
    [5] L.P. Franca, and F. Charbel, On the Limitations of Bubble Functions, Comput. Methods Appl. Mech. Engrg. 117 (1994) 225-230.
    [6] L.P. Franca, and F. Charbel, Bubble functions prompt unusual stabilized finite element methods, Comput. Methods. Appl. Mech. Engrg. 123 (1995) 299-308.
    [7] T.F. Chen, G.J. Fix, and H.D. Yang, Numerical Studies of Optimal Grid Construction, Numer. Methods Partial Different. Eq. 12 (1996) 191-206.
    [8] L.P. Franca, and A. Russo , Mass lumping emanating from residual-free bubbles, Comput. Methods Appl. Mech. Engrg. 142 (1997) 353-360.
    [9] F. Brezzi, L.P. Franca, A. Russo, Further considerations on the residual-free bubbles for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg.
    166 (1998) 25-33.
    [10] B.N. Jiang, On the least-squares method, Comput. Methods Appl. Mech. Engrg. 152 (1998) 239-257
    [11] J.M. Fiard, T.A. Manteu®el, and S.F. Mccormick, First-order sustem leasts squares (FOSLS) for convection-diffusion problems: numerical results, SIAM
    J. Sci. Comput. 19 (1998) 1958-1979.
    [12] L.P. Franca, A. Nesliturk and M. Stynes, On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method, Comput. Methods Appl. Mech. Engrg. 166 (1998) 35-49.
    [13] L.P. Franca, and A.P. Macedo, A two-level finite element method and its application to Helmholtz equation, Int. J. Numer. Methods Engrg. 43 (1998) 23-42.
    [14] P.B. Bochev, and J. Choi, A Comparative Study of Least-squares, SUPG and Galerkin Methods for Convection Problem, Int. J. Comput. Fluids 15 (2001)
    127-146.
    [15] L.P. Franca, and A. Nesliturk, On a two-level finite element method to the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Engrg 52 (2001)
    433-453.
    [16] L.P. Franca, and F.N. Hwang, Refining the submesh strategy in the two-level finite element method: Application to the advection-diffusion equation, Int. J.
    Numer. Meth. Fluids 39 (2002) 161-187.
    [17] L.P. Franca LP, G. Hauke and A. Masud, Revisiting stabilized finite element methods for the advective-diffusive equation, Comput. Methods Appl. Mech. En-
    grg. 195 (2006) 1560-1572.
    [18] M. Parvazinia, V. Nassehi, and R.J Wakeman, Multi-scale finite element modelling using bubble function method for a convection-diffusion problem , Chem.
    Engrg. Sci. 61 (2006) 2742-2751.
    [19] A. Russo, Streamline-upwind Petrov/Galerkin method (SUPG) vs residual-free bubble (RFB), Comput. Methods Appl. Mech. Engrg. 195 (2006) 1608-1620.
    [20] C. Johnson, Numerical Solution of Partial Differential Equation by the Finite
    Element Method, Cambridge University Press, Cambridge, 1987.
    [21] K.W Morton, Numerical Solution of Convection-Diffusion Problems, Chapman & Hall Press, 1996
    [22] S.A. Berger, W. Goldsmith, and E.R. Lewis, Introduction to bioengineering, Ox-
    ford University Press, 1996
    [23] B.N. Jiang. The Least-Squares Finite Element Method, Springer-Verlag, Berlin, 1998
    [24] D. Jean, and H. Antonio, Finite Element Methods for Flow Problems, John Wiley & Sons Inc Press, 2003.
    [25] S.C. Breneer, and L.R. Scott, The Mathmatical Theory of Finite Element Method, Springer-Verlag, New-York, 1994.
    Advisor
  • Feng-Nan Hwang(黃楓南)
  • Files
  • 952201028.pdf
  • approve immediately
    Date of Submission 2008-07-16

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.