Title page for 946202005


[Back to Results | New Search]

Student Number 946202005
Author Yung-en Yu(俞永恩)
Author's Email Address 946202005@cc.ncu.edu.tw
Statistics This thesis had been viewed 1486 times. Download 331 times.
Department Graduate Institute of Geophysics
Year 2007
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Seismic Travel-time Studies on Reference Model Evaluation, Earthquake Location and Crustal Structure in West Central Taiwan
Date of Defense 2008-06-25
Page Count 165
Keyword
  • 3D velocity model
  • DiLi test shot
  • earthquake location
  • traveltime inversion
  • Abstract Complex tectonic structure in Taiwan is strongly affected by the arc-continent collision between Philippine Sea Plate and Eurasia Plate. Geophysical studies involving wave propagation within complex media requires the fundamental travel-time information for structure imaging and related studies. The goal of this thesis have three folds, mainly on travel-time information contents, involving research efforts (1) to evaluate Taiwan 3-D reference models, (2) to propose a simple and effective methodology for absolute earthquake location and (3) to investigate a 2-D velocity structure profile across Western Central Taiwan through travel-time inversion.
    For the past 15 years, various 3-D models were proposed including Roecker et al., (1987), Rau and Wu (1995), Ma et al. (1996), Cheng et al. (1999), Kim et al. (2005) and Wu et al. (2007). Previous study on Rau and Wu (1995) and Ma et al. (1996) has been intensively studies (Li, K. S., 2002). For most recently published 3-D velocity models, including both Kim3D and Wu3D, the corresponding 3-D travel-time trajectories that correlate with wave-fronts were compared to evaluate its feasibility on various possible applications shown in this thesis. The travel-time computation is base on the modified expanding wave-front tracking approach proposed by Vidale (1988, 1990) through finite-difference approximation. By incorporating neo-tectonic basin structure in the Taiwan Strait and western foreland basin (Chen, 2006), the newly established 3-D reference models (MKim3D and MWu3D) can be individually identified and evaluated through the comparison on the differences in travel-time values, earthquake location and initial model setup for DiLi test shot profile. The results from both synthetic and real data applications all indicate that both Kim3D and MKim3D have smaller travel-time differences than Wu3D and MWu3D and thus have more reliable applications in there related research topics. By comparing the efforts to incorporate basin structure into existing models also indicate that spatial averaging of velocity variations in Wu3D model has to be taken care of in order to produce reasonable model. Such efforts can be visualization through comparison of travel-time differences before and after the modification.
    The purpose of TAIGER experiment during 2006 to 2009 is to investigate main seismogenic structure features of the crust and preferable even up to upper mantle through both active and passive source experiments. The primary goals for DiLi test shot experiment is to understand the wave propagation and attenuation characteristics across western foreland basin and the safety concerns while utilize 500 Kg explosive as effective energy source. One of the seismic dataset recorded by Texans recording array in the DiLi experiment is used for this study.
    A simple and effective approach through 3-D travel-time calculations for absolute earthquake location problem is proposed. By combing efficient 3-D calculation of travel-times and the construction of necessary database, non-linear location problem can be solved through recursive forward simulation of travel-times and the minimization of root-mean-square travel-time errors. Both synthetic tests on errors involved in finite-difference computation, consideration of spatial coverage of stations and influence on the existing velocity model were performed in order to understand the fundamental issues involved in absolute earthquake location problem. Study results show that the proposed algorithm is effective and the efficiency is subject to how detail the travel-time databank is demanded, the capacity of the hard disk and the efficiency of data fetching mechanism. Both synthetic and real data tests all show that the proposed methodology is workable for in-land earthquakes but not for the offshore earthquake as demonstrate from PingTung Earthquake synthetic case study. Further modification of the proposed algorithm can be pursuit by using S-P time and databases produced from the currently developed methodology.
    Wide angle refraction and reflection (WARR) study of DiLi test shot data involving data processing indicated that minimum phase and predictive de-convolution procedures are necessary in order to reduce strong oscillating source wavelet signature. The de-convolved data has the advantage for travel-time picking and phase identification. Band-passed filtering (10-40 Hz) of the recorded data enhanced the possible reflection (?) and/or diffraction (?) arrivals. Shallow basin structure and faulted block determined from first-arrival travel-times can be well defined both from near-source CMP and WARR sections. Four major faults with clear velocity change are clearly identified. However, the questionable arrivals at 11 and 15 seconds are not well constrained through 2-D travel-time forward modeling and inversion. The final model obtained from identified phases show two distinctive reflectors at 12 km and a clear reflector patch located at depth of 24 km. The interpretation of final velocity structure can be correlated well with results from seismic survey and gravity studies and the background geology. The apparent 3-D propagation effects and/or possible diffractions (?) for 11 and 15 sec phases that were caused by the complex wave propagation phenomena can be verified through explicit consideration of 3-D effects. The quality and quantity of the DaLi test shot dataset can be improved for future detailed velocity structure investigation in central Taiwan.
    Table of Content 中文摘要 …………………………………………………………… Ⅰ
    英文摘要 …………………………………………………………… Ⅲ
    目  錄 …………………………………………………………… Ⅴ
    圖 目 錄 …………………………………………………………… Ⅷ
    表 目 錄 ………………………………………………………… XⅦ
    第一章、 緒論 ……………………………………………………  1
     1.1   研究動機與目的 ………………………………………  1
     1.2   地質背景 ………………………………………………  3
     1.3   文獻回顧 ………………………………………………  5
     1.4   本文內容 ………………………………………………  6
    第二章、 台灣三維參考速度模型 ……………………………… 14
     2.1   台灣三維速度模型 …………………………………… 14
     2.2   西部淺層速度修正 …………………………………… 17
     2.3   三維初達波理論走時 ………………………………… 19
     2.4   討論 …………………………………………………… 21
    第三章、 由地利高爆炸測標定定震定位的準確度 …………… 38
     3.1   地震定位歷史 ………………………………………… 38
     3.2   三維走時地震定位演算法 …………………………… 41
      3.2.1 地震定位流程 ………………………………………… 41
      3.2.2 三維有限差分演算法 ………………………………… 42
      3.2.3 測試程式正確性 ……………………………………… 43
     3.3   理論測試 ……………………………………………… 45
      3.3.1 測試一:網內天然地震定位問題 …………………… 46
      3.3.2 測試二:網內人工炸測震源定位問題 ……………… 47
      3.3.3 測試三:網外天然地震定位問題 …………………… 47
     3.4   實際地震定位 ………………………………………… 48
      3.4.1 人工地利炸測定位問題 ……………………………… 49
      3.4.2 921 集集地震定位問題 ……………………………… 51
    第四章、 地利炸測實驗 ………………………………………… 71
      4.1  炸測實驗目的 ………………………………………… 71
      4.2  大測實驗配置 ………………………………………… 71
      4.3  資料處理 ……………………………………………… 72
      4.4  解迴旋 ………………………………………………… 74
      4.4.1 最小波向 ……………………………………………… 74
      4.4.2 自相關分析 …………………………………………… 74
      4.4.3 突波解迴旋 …………………………………………… 75
      4.4.4 預測錯誤解迴旋 ……………………………………… 75
      4.4.5 CMP資料處理 ……………………………………… 76
      4.4.6 遠支距資料處理 ……………………………………… 77
      4.4.7 結果討論 ……………………………………………… 77
    第五章、 台灣中部地利測線震波走時速度構造逆推 ………… 98
    5.1  二維走時逆推演算法 ………………………………… 98
      5.1.1 模型建置參數 ………………………………………… 98
      5.1.2 正演 …………………………………………………… 99
      5.1.3 逆推 …………………………………………………… 100
      5.2  處理流程 ……………………………………………… 101
      5.3  震波波相的決定與走時挑選 ………………………… 103
      5.4  二維震測剖面走時逆推 ……………………………… 105
      5.4.1 權重參數的測試訂定 ………………………………… 105
      5.4.2 地利地區CMP資料逆推 …………………………… 106
      5.4.3 遠支距資料逆推 ……………………………………… 107
      5.4.4 逆推所得最終速度模型 ……………………………… 109
    第六章、討論與結論
      6.1  結果討論 ……………………………………………… 125
      6.2  未來研究方向 ………………………………………… 127
    參考文獻 ………………………………………………………… 129
    附錄一  DiLi炸測遠支距資料自相關分析 …………………… 135
    Reference Aki, K. and P. Richard, Quantitative seismology: theory and methods, W. H. Freeman and Company, 1980.
    Benz, H.M., Chouet, B.A., Dawson, P.B., Lahr, J.C., Page, R.A. & Hole,
    J.A., Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska, J. geophys. Res., 101(4), 8111–8128, 1996.
    Cerveny, V., I. A. Molotkov, I. Psencik, Ray method in seismology: Univerzita Karlova, Praha, 57-63, 1977.
    Chang, S. L., Subsurface Geologic Study of the Taichung Basin Taiwan, Petro. Geol. Taiwan, 8, 21-45, 1971.
    Chen, P. F., Huang, B. S., and Liang, W. T., Evidence of a slab of subducted lithosphere beneath central Taiwan from seismic waveforms and travel times, 2004.
    Cheng, W. B., C. Wang, C. T. Shyu, and T. C. Shin, Crustal structure of the convergent plate-boundary zone, east Taiwan, assessed by seismic tomography, Geol. Soc. Am. Bull.., 1999.
    Chiu. H. T., Miocene stratigraphy and its relation to the Palaeogene rocks in west-central Taiwan. Petro. Geol. Taiwan, 2, 51-80, 1975.
    Douglas, A., Joint Epicenter Determination. Nature, 47-48, 1967.
    Eaton, J. P., HYPOLAYR, a computer program for determining hypocenters of local earthquakes in an earth consisting of uniform flat layers over a half space, Open File Report, U.S. Geological Survey, 155 pp, 1969.
    Etris, E. L., Crabtree, N. J. and Dewar, J. True depth conversion:
    more than a pretty picture. CSEG Recorder, 26, 11-22, 2001.
    Evans, J., D. Eberhart-Phillips, C. H. Thurber, User's manual for SIMULPS12 for imaging vp and vp/vs: A derivative of the "Thurber" tomographic inversion SIMUL3 for local earthquakes, USGS Open-File Report 94-431, 1994.
    Geiger I., Probability method for the determination of earthquake eqicenters from the arrival time only [J]. Bull St. Louis Univ, 8(1), 60 ~ 71, 1912.
    Gomberg, J., Shedlock, K., and Roecker, S., The effect of S wave arrival times on the accuracy of hypocenter estimation: Seismological Society of America Bulletin, v. 80, p. 1605-1628, 1990.
    Hole, J. A. and B. C. Zelt, 3-D finite-difference reflection traveltime, Geophys. J. Int., 121, 427-434, 1995.
    Hooper, H., H. Patton, J. Bonner and M. Leidig, Effects of Confinement on Short-Period Surface Waves: Observations from a New Dataset, Bull. Seism. Soc. Am., Vol. 96, No. 2, pp. 697-712, 2006.
    Hsiao, P. T., Miocene stratigraphy and its relation to the Palaeogene rocks in west-cwntral Taiwan, Petro. Geol. Taiwan, 2, 51-80, 1975.
    Kim, K. H., J. M. Chiu, J. Pujol, K. C. Chen, B. S. Huang, Y. H. Yeh, and
    P. Shen , Three-dimensional Vp and Vs structural model associated with the active subduction and collision tectonics in the Taiwan region, Geophys. J. Int., 162, 204– 220, 2005.
    Lauren Kim Powell., Feedback between erosion and fault reactivation in the Puli basin:Hsuehshan belt of central Taiwan, Ph.D. Thesis, The University of Colorado., 2003
    Lee, C. P., and Y. B. Tsai, Variations of P-wave travel-time residuals before and after the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seism. Soc. Am. 94, 2348-2365, 2004.
    Lee, W. H. K. and J. C. Lahr, HYP071: A computer program for
    determining hypocenter, magnitude, and first motion pattern of local earthquakes, Open File Report, U. S. Geological Survey,100pp,1972.
    Ma, K. F., J. H. Wang, and D. Zhao, Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan, J. Phys, Earthm 44m 85-105, 1996.
    Marsden, D., V0-k method of depth conversion. The Leading Edge,
    11, 53-54, 1992.
    McIntosh, K., Y. Nakamura, T. K. Wang, R. C. Shih, A. Chen and C. S. Liu, Crustal-scale seismic profiles across Taiwan and the western Philippine Sea, Tectonophysics, 401:23-54, 2005.
    Pavis, G. L., and J. R. Booker, The mixed discrete-continuous inverse problem : application to the simultaneous determination of earthquake hypocenters and velocity structure, J. Geophys. Res., 85, 4801-4810, 1980.
    Rau, R. J., and F. T. Wu, Tomographic imaging of lithospheric structure under Taiwan, Earth Planetary Science Letters, 133, 517-532, 1995.
    Roecker, S. W., Y. H. Yeh, and Y. B. Tasi, Three-dimensional P and S wave velocity structure beneath Taiwan: deep structure beneath an are-continent collision, J. Geophys. Res., 92, 10547-10570, 1987.
    Pavlis G. L. Appraising earthquake hypocenter location errors: A complete, pactical approach for single-event locations, Bulletin of the Seisomological society of America, Volume 76, Number 6, pp. 1699-1717, 1986.
    Snoke, A.J. & Lahr, J.C., Locating earthquakes: at what distances can the Earth no longer be treated as flat?, Seism. Res. Lett., 72(5), 538–541, 2001
    Shen, P., Simultaneous travel time inversion for 3D velocity model and earthquake locations: Application to the Northridge, California, 1994 mainshock-aftershock sequence. Geological Science. Memphis, University of Memphis, 117, 1999.
    Sheriff. R.E. and Geldart, L.P., Exploration seismology. vol. 2:
    Data-processing and interpretation: Cambridge Univ. Press., 1983
    Smallwood, J. R., Use of V0-k depth conversion from shelf to
    deep-water: how deep is that brightspot? First Break, 20.2, 99-107, 2002.
    Suppe, J., Mechanics of mountain-building and metamorphism in Taiwan, Papers presented at ROC-USA seminar on plate tectonics and metamorphic geology, Memoir of the Feolofical Society of China, 4, 67-89, 1981.
    Suppe, J., Kinematics of are-continent collision, flipping of subduction, and back-are spreading near Taiwan. Mem. Geol. Soc. China, 6, 21-33, 1984.
    Tryggvason A. and Bergman B., A traveltime reciprocity discrepancy in the Podvin & Lecomte time3d finite difference algorithm, Geophys. J. Int., 165, 432-435, 2006.
    Um, J., and C. H. Thurber , A fast algorithm for two-point seismic
    ray tracing, Bull. Seism. Soc. Am., 77, 972–986, 1987.
    Vidale, J. E., Finite-difference calculation of travel times, Bulletin of the Seismological Society of America, 78(6), 2062-2076., 1988.
    Vidale, J. E., Finite-difference calculation of travel times in three dimensions, Geophysics, 55(5), 521-526., 1990.
    Wang C. Y., C. L. Li, F. C. Su, M. T. Leu, M. S. Wu, S. H. Lai, and C.C. Chern, Structural Mapping of the 1999 Chi-Chi Earthquake Fault, Taiwan by Seismic Reflection Methods. TAO,13,211-226, 2002.
    Wang, J. H., Studies of earthquakes seismology in Taiwan during the 1987-1996, J. Geol. Soc. China, 41, 291-336, 1998.
    Waldhauser, F., W. L. Ellsworth, and A. Cole, Slip-parallel seismic lineations along the northern Hayward fault, California, Geophys. Res. Lett. 26,3525-3528, 1999.
    Waldhauser, F., W. L. Ellsworth, A double-difference earthquake location Algorithm: method and application to the northern Hayward fault, California, Bull. Seism. Soc. Am. 90,1353-1368, 2000.
    Wu, Y. M., Chang, C. H., Zhao, L., J. Bruce H. Shyu, Chen, Y. G., Kerry Sieh, and J. P. Avouac, Seismic tomography of Taiwan: Improved constraints from a dense network of string motion stations, J. Geophy. Res., VOL. 112, B08312, doi:10.1029/2007JB004983, 2007.
    Zelt, C. A., and R. B. Smith, Seismic traveltime inversion for 2-D crustal velocity structure: Geophys. J. Int., 108, 16-34, 1992.
    Zelt, C. A., Modelling strategies and model assessment for wide-angle seismic traveltime data, Geophys. J. Int., 139, 183-204, 1999.
    何春蓀、譚立平。臺灣臺中東勢至南投國姓間煤田地質:台灣省地質調查所彙刊第十二號,20-62頁,1960。
    林家全。利用重力資料探討台中盆地與埔里盆地之二維地下構造,國立中央大學地球物理研究所,碩士論文,2005年。
    李坤松。集集地震地動資料的整合與模擬,國立中正大學應用地球物理研究所,碩士論文,2002年。
    李憲忠。九二一集集地震三維震源過程與震波傳遞分析,國立中央大學地球物理研究所,博士論文,2003年。
    陳美玲。台灣海峽及台灣西部平原支沈積層速度構造,國立中央大學地球物理研究所,碩士論文,2006年。
    黃雪美。利用線形地震陣列探討台灣中南部之二維構造,國立中央大學地球物理研究所,碩士論文,2004年。
    鄭錦桐、李錫堤、蔡義本。集集大地震斷層破裂面幾何形貌及強地動衰減模式,中國地質學會89年年會論文集,2000年。
    Advisor
  • How-Wei Chen(陳浩維)
  • Files
  • 946202005.pdf
  • approve immediately
    Date of Submission 2008-07-16

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.