Title page for 943404009


[Back to Results | New Search]

Student Number 943404009
Author Shih-Hsien Yang(楊士賢)
Author's Email Address jacky.yg@yahoo.com.tw
Statistics This thesis had been viewed 1861 times. Download 1505 times.
Department Chemical and Materials Engineering
Year 2008
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language zh-TW.Big5 Chinese
Title Preparation of Superhydrophobic Films by Plasma Technology
Date of Defense 2009-07-02
Page Count 175
Keyword
  • adhesion
  • atmospheric pressure plasma
  • contact angle
  • duty cycle
  • pulsed plasma
  • roughness
  • superamphiphobic
  • superhydrophobic
  • Abstract In this paper, the superhydrophobic films were prepared rapidly in one step by adjusting various parameters. Besides, the physical, chemical, mechanical strength, and optical properties were analyzed and discussed. The plasma deposition mechanisms were also discussed through above results as following:
    First, super-hydrophobic films were deposited in one-step simple process by pulsed RF C6F6 plasma, and the influence of duty-cycle (DC) on the surface structure and chemical characteristics of depositing fluorocarbon films were investigated. It was found that with decreasing the DC from 1 to 0.1, the rough structure of the film which had a lot of particles was obtained. Besides, this composite structure with low surface energy resulted in exhibiting the desirable super-hydrophobic surface property. Finally, the fluorocarbon films were prepared on cotton substrate and the adhesion on the substrate was strong.
    Second, the silicon wafer and plastic substrate have been coated silica films by Plasma enhanced chemical vapor deposition (PECVD). The films were deposited by introducing Ethoxytrimethylsilane (EOTMS), Diethoxydimethylsilane (DEODMS) and Methyltriethoxysilane (MTEOS) into the RF bell jar reactor fed with different oxygen flow rate. When adding oxygen into PECVD reactor, SiOx films with hardness 8H were deposited on hard silicon wafer. On the other hand, the SiOx film with 5B degree adhesion, 7H degree hardness, and hydrophobic characteristic could be obtained when a buffer layer was coated between the 1500nm-thick of SiOx film and the PMMA substrate.
    Third, the chemical properties and surface morphology of superhydrophobic (SH) films deposited by self-assembled RF atmospheric-pressure plasma jet (APPJ) deposition system was investigated. The O2/HMDSN (hexamethyldisilazane) and Ar serve as the deposition precursor and ionization gas, respectively. Consequently, the smooth surface was transformed into a rough surface with many particles when the nozzle-to-sample distance was decreased from 20 mm to 10 mm. The SH films (contact angle over 150° and sliding angle below 5°) were obtained when the nozzle-to-sample distance was 10 mm. A simplified deposition mechanism is proposed to explain the effect of process parameters on the films that are formed.
    Finally, the film was coated on the conductive and the non-conducting glass by APPJ system. It was found that the Arc condition would be produced on the conductive glass, and the superhydrophobic films ( contact angle: 170o, sliding angle: 2.2o ) could be prepared using the HMDSN monomer by Arc-APPJ. Besides, the absolute optical transmittance of the film increased with increasing the speed of stage. Finally, the transparent superamphiphobic film (WCA: 169o, OWA: 146.9o and Tavg: 97.1%) could be prepared rapidly in optimum condition (150 mm/s) by Arc-APPJ.
    Table of Content 中文摘要I
    英文摘要III
    誌謝V
    目錄VI
    圖目錄IX
    表目錄XIII
    第一章 前言1
      1-1 研究緣起1
      1-2 研究目標與論文架構3
      參考文獻6
    第二章 原理與文獻回顧9
      2-1 電漿簡介9
        2-1.1 電漿緣起9
        2-1.2 電漿基本原理10
    2-1.3 遙距式與脈衝式電漿12
    2-1.4 電漿鍍膜15
      2-2 大氣電漿簡介18
        2-2.1 大氣電漿基本原理18
        2-2.2 大氣電漿種類22
        2-2.3 大氣電漿鍍膜回顧25
    2-3 超疏水簡介29
        2-3.1 蓮花效應29
        2-3.2 超疏水原理30
        2-3.3 表面粗糙度之理論數學模式32
        2-3.4 粗糙表面之製備方式36
        2-3.5 電漿技術製備超疏水薄膜回顧38
      文獻回顧45
    第三章 實驗方法與儀器原理54
      3-1 論文流程、實驗方法與儀器原理54
        3-1.1 論文主體與各章節之實驗架構54
        3-1.2 實驗藥品與材料60
        3-1.3 電漿沉積設備63
      3-2 分析儀器及原理70
        3-2.1 化學性質量測70
        3-2.2 物理性質量測73
        3-2.3 薄膜表面特性量測77
        3-2.4 電漿特性模擬分析82
      參考文獻83
    第四章 以脈衝式電漿製備奈米微結構超疏水薄膜85
      4-1 前言85
      4-2 實驗步驟86
      4-3 結果與討論88
        4-3.1 化學結構分析88
        4-3.2 表面型態分析94
        4-3.4 成膜反應機制100
    4-4 結論100
    參考文獻102
    第五章 以PECVD製備硬質疏水膜於PMMA之研究105
      5-1 前言105
      5-2 實驗106
        5-2.1 沉積系統106
        5-2.2 沉積薄膜特性107
        5-2.3 鉛筆硬度測試107
        5-2.4 方格測試108
      5-3 結果與討論109
        5-3.1 矽晶片上硬質SiOx薄膜之特性109
          5-3.1.1 不同氧含量單體109
    5-3.1.2 添加不同氧氣流率113
    5-3.2 硬質SiOx膜沉積於PMMA之機械性質117
    5-3.2.1 硬質SiOx薄膜於PMMA的黏著強度117
    5-3.2.2 不同厚度之硬質SiOx薄膜於PMMA的硬度118
    5-3.2.3 不同厚度之硬質SiOx薄膜於PMMA的穿透率120
    5-4 結論121
    參考文獻122
    第六章 以大氣電漿製備SiOx薄膜於超疏水之應用125
    6-1 前言125
    6-2 實驗126
    6-3 結果與討論129
    6-3.1 單體結構探討129
    6-3.2 不同氧氣流量130
    6-3.3 不同噴嘴間距131
    6-3.3.1 噴嘴間距對接觸角之影響132
    6-3.3.2 噴嘴間距對表面起伏之影響134
    6-3.3.3 噴嘴間距對薄膜化學組成之影響136
    6-3.4 薄膜沉積機制138
    6-4 結論140
    6-5 後記:電弧現象的產生141
    參考文獻142
    第七章 以大氣電漿製備透明超雙疏膜材144
    7-1 前言144
    7-2 實驗145
    7-3 結果與討論148
    7-3.1 不同電漿狀態之影響148
    7-3.1.1 不同電漿狀態探討148
    7-3.1.2 不同電漿狀態所沉積薄膜之疏水特性149
    7-3.1.3 不同電漿狀態所沉積薄膜之透光性150
    7-3.1.4 不同電漿狀態所沉積薄膜之動態疏水特性152
    7-3.1.5 不同電漿所沉積膜材之化學特性154
    7-3.2 不同載台移動速度之影響158
    7-3.2.1 不同載台移動速度沉積薄膜之表面結構158
    7-3.2.2 不同載台移動速度沉積薄膜之雙疏特性161
    7-3.2.3 不同載台移動速度沉積薄膜之表面能分析162
    7-3.2.4 不同載台移動速度沉積薄膜之可見光穿透率164
    7-4 結論165
    7-5 後記:粗糙度對接觸角的影響166
    參考文獻167
    第八章 結論170
    附錄A:大氣電漿噴嘴172
    附錄B:大氣電漿電子溫度計算173
    已發表論文174
    Reference 第二章
    [1]洪昭南、郭有斌,『以化學氣相沉積法成長半導體薄膜』,化工技術,(2000)。
    [2]Hynes, A. M., Shenton, M. J., Badyal, J. P. S., "Pulsed plasma polymerization of perfluorocyclohexane", Macromolecules, 29, 4220-4225 (1996).
    [3]楊士賢,『以脈衝式電漿輔助化學氣相沉積法製備氟化非晶薄膜之研究』,中原大學化學工程學系,碩士論文,民國94年。
    [4]A. Grill. Cold Plasma in Materials Fabrication. 1993.
    [5]Yasuda, H., Hirotsu, T., "Critical evaluation of condition of plasma polymerization", J. Polym. Sci. Pol. Chem., 16, 743 (1978).
    [6]Tendero, C., Tixier, C., Tristant, P., Desmaison, J., Leprince, P., "Atmospheric pressure plasmas: A review", Spectrochimica Acta. Part B, 61, 2-30 (2006).
    [7]Schutze, A., Jeong, J. Y., Babayan, S. E., Park, J., Selwyn, G. S., Hicks, R. F., "The atmospheric-pressure plasma jet: A review and comparision to other plasma sources", IEEE Trans. Plasma Sci., 26, 1685-1694 (1998).
    [8]郭志成,『大氣電漿技術沉積二氧化矽薄膜之機械性質探討』,國立台灣大學工學院機械工程學研究所,碩士論文,民國96年。
    [9]Babayan, S. E., Jeong, J. Y., Schütze, A., Tu, V. J., Moravej, M., Selwyn, G. S., Hicks, R. F., "Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet", Plasma Sources Sci. Technol., 10, 573-578 (2001).
    [10]Rymuza, Z., Misiak, M., Rzanek-Boroch, Z., Schmidt-Szalowski, K., Janowska, J., "The effects of deposition and test conditions on nanomechanical behaviour of ultrathin films produced by plasma-enhanced chemical vapour deposition process at atmospheric pressure", Thin Solid Films, 466, 158-166 (2004).
    [11]Zhu, X., Arefi-Khonsari, F., Petit-Etienne, C., Tatoulian, M., "Open air deposition of SiO2 films by an atmospheric pressure line-shaped plasma", Plasma Process Polym., 2, 407-413 (2005).
    [12]Hopfe, V., Spitzl, R., Dani, I., Maeder, G., Roch, L., Rogler, D., Leupolt, B., Schoeneich, B., "Remote microwave PECVD for continuous, wide-area coating under atmospheric pressure", Chem. Vapor Depos., 11, 497-509 (2005).
    [13]Ladwig, A., Babayan, S., Smith, M., Hester, M., Highland, W., Koch, R., Hicks, R. F., "Atmospheric plasma deposition of glass coatings on aluminum", Surf. Coat. Technol., 201, 6460-6464 (2007).
    [14]Raballand, V., Benedikt, J., Keudell, A. V., "Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet", Appl. Phys. Lett., 92, 091502/091501-091502/091503 (2008).
    [15]Asmann, M., Kolman, D., Heberlein, J., Pfender, E., "Experimental confirmation of thermal plasma CVD of diamond with liquid feedstock injection model", Diamond Relat. Mater., 90, 13-21 (2000).
    [16]Yokoyama, T., Kogoma, M., Kanazawa, S., Moriwaki, T., Okazaki, S., "The improvement of the atmospheric-pressure glow plasma method and the deposition of organic films", J. Phys. D: Appl. Phys., 23, 374- 377 (1990).
    [17]Prat, R., Koh, Y. J., Babukutty, Y., Kogoma, M., Okazaki, S., Kodama, M., "Polymer deposition using atmospheric pressure plasma glow (APG) discharge", Polymer, 41, 7355-7360 (2000).
    [18]Nozaki, T., Kimura, Y., Okazaki, K., "Carbon nanotubes deposition in glow barrier discharge enhanced catalytic CVD", J. Phys. D: Appl. Phys., 35, 2779-2784 (2002).
    [19]Kanazawa, S., Kogoma, M., Moriwaki, T., Okazaki, S., "Stable glow plasma at atmospheric pressure", J. Phys. D: Appl. Phys., 21, 838- 840 (1988).
    [20]Janca, J., Klima, M., Slavicek, P., Zajickova, L., "HF plasma pencil - new source for plasma surface processing", Surf. Coat. Technol., 116- 119, 547- 551 (1999).
    [21]Smiljanic, O., Stansfield, B. L., Dodelet, J. P., Serventi, A., Desilets, S., "Gas phase synthesis of SWNT by an atmospheric pressure plasma jet", Chem. Phys. Lett., 356, 189-193 (2002).
    [22]Foest, R., Adler, F., Sigeneger, F., Schmidt, M., "Study of an atmospheric pressure glow discharge (APG) for thin film deposition", Surf. Coat. Technol., 163-164, 323-330 (2003).
    [23]Cada, M., Churpita, O., Hubicka, Z., Sichova, H., Jastrabik, L., "Investigation of the low temperature atmospheric deposition of TCO thin films on polymer substrates", Surf. Coat. Technol., 177-178, 699-704 (2004).
    [24]Inomata, K., Ha, H., Chaudhary, K. A., Koinuma, H., "Open air deposition of SiO2 film from a cold plasma torch of tetramethoxysilane-H2-Ar system", Appl. Phys. Lett., 64, 46-48 (1994).
    [25]Brown, M., Hayes, P., Prangnell, P., "Charaterisation of thin silica films deposited on carbon fibre by an atmospheric pressure non-equilibrium plasma (APNEP)", Compos, Part A, 33, 1403-1408 (2002).
    [26]Barthlott, W., Neinhuis, C., "Purity of the sacred lotus, or escape from contamination in biological surfaces", Planta, 202, 1-8 (1997).
    [27]Yoshioka, S., Kinoshita, S., "Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly", Proc. R. Soc. Lond B, 271, 581-587 (2004).
    [28]Woodward, I., Roucoules, W. C. E., Roucoules, V., Badyal, J. P. S., "Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films", Langmuir, 19, 3432-3438 (2003).
    [29]Hare, E. F., Shafrin, E. G., Zisman, W. A. J., "Properties of films of adsorbed fluorinated acids", Phys. Chem., 58, 236-239 (1954).
    [30]張貴錢,『有機高分子與矽氧烷化合物製備超疏水及高透光性薄膜之研究』,國立中央大學化學工程與材料工程研究所,博士論文,民國96年。
    [31]Young, T., "An Essay on the Cohesion of Fluids", Philos Trans. R. Soc. London, 95, 65-87 (1805).
    [32]Wenzel, R. N., "Resistance of solid surfaces to wetting by water", Ind. Eng. Chem., 28, 988-994 (1936).
    [33]Cassie, A. B. D., Baxter, S., "Wettability of porous surfaces", Trans. Faraday. Soc., 40, 546-551 (1944).
    [34]Patankar, N. A., "On the modeling of hydrophobic contact angles on rough surfaces", Langmuir, 19, 1249-1253 (2003).
    [35]Patankar, N. A., "Transition between superhydrophobic states on rough surfaces", Langmuir, 20, 7097-7102 (2004).
    [36]Shang, H. M., Wang, Y., Limmer, S. J., Chou, T. P., Takahashi, K., Cao, G. Z., "Optically transparent superhydrophobic silica-based films", Thin Solid Films, 472, 37-43 (2005).
    [37]Nadargi, D. Y., Latthe, S. S., Hirashima, H., Rao, A. V., "Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels", Microporous and Mesoporous Materials, 117, (3)617-626 (2009).
    [38]Venkateswara Rao, A., Latthe, S. S., Nadargi, D. Y., Hirashima, H., Ganesan, V., "Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method", Journal of Colloid and Interface Science, 332, (2)484-490 (2009).
    [39]Nakajima, A., Abe, K., Hashimoto, K., Watanabe, T., "Preparation of hard super-hydrophobic films with visible light transmission", Thin Solid Films, 376, 140-143 (2000).
    [40]Chang, K.-C., Chen, Y.-K., Chen, H., "Preparation and characterization of superhydrophobic silica-based surfaces by using polypropylene glycol and tetraethoxysilane precursors", Surf. Coat. Technol., 201, (24)9579-9586 (2007).
    [41]Chang, K.-C., Chen, Y.-K., Chen, H., "Fabrication of highly transparent and superhydrophobic silica-based surface by TEOS/PPG hybrid with adjustment of the pH value", Surf. Coat. Technol., 202, (16)3822-3831 (2008).
    [42]Tian, H., Yang, T., Chen, Y., "Fabrication and characterization of superhydrophobic thin films based on TEOS/RF hybrid", Appl. Surf. Sci., 255, (7)4289-4292 (2009).
    [43]Li, M., Zhai, J., Liu, H., Song, Y., Jiang, L., Zhu, D., "Electrochemical deposition of conductive superhydrophobic zinc oxide thin films", J. Phys. Chem. B, 107, 9954-9957 (2003).
    [44]Lee, W., Jin, M. K., Yoo, W. C., Lee, J. K., "Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability", Langmuir, 20, 7665-7669 (2004).
    [45]Onda, T., Shibuichi, S., Satoh, N., Tsujii, K., "Super-water-repellent fractal surfaces", Langmuir, 12, 2125-2127 (1996).
    [46]Jin, M., Feng, X., Feng, L., Sun, T., Zhai, J., Li, T., Jiang, L., "Superhydrophobic aligned polystyrene nanotube films with high adhesive force", Adv. Mater., 17, 1977-1981 (2005).
    [47]Hozumi, A., Kondo, T., Kajita, I., Sekoguchi, H., Sugimoto, N., Takai, O., "Effects of methyl and perfluoro-alkyl groups on water repellency of silicon oxide films prepared by microwave plasma enhanced chemical vapor deposition", Jpn. J. Appl. Phys., 36, 4959-4963 (1997).
    [48]Coulson, S. R., Woodward, I. S., Badyal, J. P. S., Brewer, S. A., Willis, C., "Plasmachemical functionalization of solid surfaces with low surface energy perfluorocarbon chains", Langmuir, 16, 6287-6293 (2000).
    [49]Teare, D. O. H., Spanos, C. G., Ridley, P., Kinmond, E. J., Roucoules, V., Badyal, J. P. S., Brewer, S. A., Coulson, S., Willis, C., "Pulsed plasma deposition of super-hydrophobic nanospheres", Chem. Mat., 14, 4566-4571 (2002).
    [50]Teshima, K., Sugimura, H., Inoue, Y., Takai, O., Takano, A., "Ultra-water-repellent poly(ethylene terephthalate) substrates", Langmuir, 19, 10624-10627 (2003).
    [51]Lau, K. K. S., Bico, J., Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., McKinley, G. H., Gleason, K. K., "Superhydrophobic Carbon Nanotube Forests", Nano. Lett., 3, 1701-1705 (2003).
    [52]Fu, G. D., Kang, E. T., Neoh, K. G., "Deposition of Nanostructured Fluoropolymer Films on Silicon Substrates via Plasma Polymerization of Allylpentafluorobenzene", J. Phys. Chem. B, 107, 13902-13910 (2003).
    [53]Cicala, G., Milellab, A., Palumboa, F., Faviab, P., d’Agostinob, R., "Morphological and structural study of plasma deposited fluorocarbon films at different thicknesses", Diam. Relat. Mat., 12, 2020-2025 (2003).
    [54]Chase, J. E., Boerio, F. J., "Deposition of plasma polymerized perfluoromethylene-dominated films showing oil-repellency", J. Vac. Sci. Technol. A, 21, 607-615 (2003).
    [55]Wu, Y., Sugimura, H., Inoue, Y., Takai, O., "Preparation of hard and ultra water-repellent silicon oxide films by microwave plasma enhanced CVD at low substrate temperatures", Thin Solid Films, 435, 161-164 (2003).
    [56]Kim, S. H., Kim, J. H., Kang, B. K., Uhm, H. S., "Superhydrophobic CFx coating via In-Line atmospheric RF plasma of He-CF4-H2", Langmuir, 21, 12213-12217 (2005).
    [57]Kim, J. H., Liub, G., Kim, S. H., "Deposition of stable hydrophobic coatings with in-line CH4 atmospheric rf plasma", J. Mater. Chem, 16, 977-981 (2006).
    [58]Ohtsu, Y., Yamagami, N., Fujita, H., "Ultra-water repellency of films prepared by capacitively coupled C2H2F2/Ar discharge plasma", Jpn. J. Appl. Phys., 46, L679-L681 (2007).
    [59]Satyaprasad, A., Jain, V., Nema, S. K., "Deposition of superhydrophobic nanostructured teflon-like coating using expanding plasma arc", Appl. Surf. Sci., 253, 5462-5466 (2007).
    [60]Ji, Y. Y., Kim, S. S., Kwon, O. P., Lee, S. H., "Easy fabrication of large-size superhydrophobic surfaces by atmospheric pressure plasma polymerization with non-polar aromatic hydrocarbon in an in-line process", Appl. Surf. Sci., 255, 4575-4578 (2009).
    [61]Wu, Y., noue, Y., Sugimura, H., Takai, O., Kato, H., Murai, S., Oda, H., "Characteristics of ultra water-repellent thin films prepared by combined process of microwave plasma-enhanced CVD and oxygen-plasma treatment", Thin Solid Films, 407, 45-49 (2002).
    [62]Kim, J. D., Lee, K. H., Kim, K. Y., Sugimura, H., Takaia, O., Wub, Y., Inouec, Y., "Characteristics and high water-repellency of a-C:H films deposited by r.f. PECVD", Surf. Coat. Technol., 162, 135-139 (2003).
    [63]Stelmashuk, V., Biederman, H., Slavinska, D., Zemek, J., Trchova, M., "Plasma polymer films rf sputtered from PTFE under various argon pressures", Vacuum, 77, 131-137 (2005).
    [64]Nagai, M., Takai, O., Hori, M., "Atmospheric pressure fluorocarbon-particle plasma chemical vapor deposition for hydrophobic film coating", Jpn. J. Appl. Phys., 45, L460–L462 (2006).
    [65]Youngblood, J. P., McCarthy, T. J., "Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma", Macromolecules, 32, 6800-6806 (1999).
    [66]Riccardi, C., Barni, R., Fontanesi, M., Marcandalli, B., Massafra, M., Selli, E., Mazzone, G., "A SF6 RF plasma reactor for research on textile treatment", Plasma Sources Sci. Technol., 10, 92-98 (2001).
    [67]Woodward, I., Schofield, W. C. E., Roucoules, V., Badyal, J. P. S., "Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films", Langmuir, 19, 3432-3438 (2003).
    [68]Ying, Z., Xuemei, S., Munan, Y., Bo, W., Hui, Y., "Superhydrophobic surfaces prepared by plasma fluorination of lotus-leaf-like amorphous carbon films", Surf. Rev. Lett., 13, 117-122 (2006).
    [69]Fresnais, J., Chapel, J. P., Poncin-Epaillard, F., "Synthesis of transparent superhydrophobic polyethylene surfaces", Surf. Coat. Technol., 200, 5296-5305 (2006).
    [70]Gogolides, E., Vlachopoulou, M. E., "Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces", Nanotechnology, 17, 3977-3983 (2006).
    [71]Ruiz, A., Valsesia, A., Ceccone, G., Gilliland, D., Colpo, P., Rossi, F., "Fabrication and Characterization of Plasma Processed Surfaces with Tuned Wettability", Langmuir, 23, 12984-12989 (2007).
    [72]Vourdas, N., Tserepi, A., "Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing", Nanotechnology, 18, 125304-125310 (2007).
    [73]Mundo, R., Palumbo, D. F., d'Agostino, R., "Nanotexturing of polystyrene surface in fluorocarbon plasmas from sticky to slippery superhydrophobicity", Langmuir, 24, 5044-5051 (2008).
    [74]Hodak, S. K., Supasai, T., Paosawatyanyong, B., Kamlangkla, K., Pavarajarn, V., "Enhancement of the hydrophobicity of silk fabrics by SF6 plasma", Appl. Surf. Sci., 254, 4744-4749 (2008).
    [75]Gao, S. H., Lei, M. K., Liu, Y., Wen, L. S., "CF4 radio frequency plasma surface modification of silicone rubber for use as outdoor insulations", Appl. Surf. Sci., 255, 6017-6023 (2009).
    第三章
    [1]劉志宏,『應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究』,中原大學化學工程學系,博士論文,民國94年。
    [2]Vinogradov, I. P., Dinkelmann, A., Lunk, A., "Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD)", Surf. Coat. Tech., 174-175, 509-514 (2003).
    [3]Biloiu, C., Biloiu, I. A., Sakai, Y., Suda, Y., Ohta, A., "Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: deposition, morphology, structural and chemical properties", J. Vac. Sci. Technol. A, 22, 13-19 (2004).
    [4]Xu, X., Li, L., Wang, S., Zhao, L., Ye, T., "Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure", Plasma Sources Sci. Technol., 16, 372-376 (2007).
    [5]Chou, J. S., Lee, S. C., "Effect of porosity on infrared-absorption spectra of silicon dioxide", J. Appl. Phys., 77, 1805-1807 (1995).
    [6]Fracassi, F., Lamendola, R., "PECVD of SiOxNyCzHw thin films from hexamethyldisilazane containing feed. Investigation on chemical characteristics and aging behavior", Plasmas Polym., 2, 25-40 (1997).
    [7]Han, L. M., Timmons, R., Lee, R. B., W., W., "Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films", J. Vac. Sci. Technol. B, 18, 799-804 (2000).
    [8]Kim, M. T., Lee, J., "Characterization of amorphous SiC:H films deposited from hexamethyldisilazane", Thin Solid Films, 303, 173-179 (1997).
    [9]Grill, A., Patel, V., "Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane", J. Appl. Phys., 85, 3314- 3318 (1999).
    [10]Parsons, G. N., Souk, J. H., Batey, J., "Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition", J. Appl. Phys., 70, 1553-1560 (1991).
    第四章
    [1]劉志宏,『應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究』,中原大學化學工程學系,博士論文,民國94年。
    [2]Vinogradov, I. P., Dinkelmann, A., Lunk, A., "Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD)", Surf. Coat. Tech., 174-175, 509-514 (2003).
    [3]Biloiu, C., Biloiu, I. A., Sakai, Y., Suda, Y., Ohta, A., "Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: deposition, morphology, structural and chemical properties", J. Vac. Sci. Technol. A, 22, 13-19 (2004).
    [4]Xu, X., Li, L., Wang, S., Zhao, L., Ye, T., "Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure", Plasma Sources Sci. Technol., 16, 372-376 (2007).
    [5]Chou, J. S., Lee, S. C., "Effect of porosity on infrared-absorption spectra of silicon dioxide", J. Appl. Phys., 77, 1805-1807 (1995).
    [6]Fracassi, F., Lamendola, R., "PECVD of SiOxNyCzHw thin films from hexamethyldisilazane containing feed. Investigation on chemical characteristics and aging behavior", Plasmas Polym., 2, 25-40 (1997).
    [7]Han, L. M., Timmons, R., Lee, R. B., W., W., "Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films", J. Vac. Sci. Technol. B, 18, 799-804 (2000).
    [8]Kim, M. T., Lee, J., "Characterization of amorphous SiC:H films deposited from hexamethyldisilazane", Thin Solid Films, 303, 173-179 (1997).
    [9]Grill, A., Patel, V., "Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane", J. Appl. Phys., 85, 3314- 3318 (1999).
    [10]Parsons, G. N., Souk, J. H., Batey, J., "Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition", J. Appl. Phys., 70, 1553-1560 (1991).
    第五章
    [1]劉志宏,『應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究』,中原大學化學工程學系,博士論文,民國94年。
    [2]Vinogradov, I. P., Dinkelmann, A., Lunk, A., "Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD)", Surf. Coat. Tech., 174-175, 509-514 (2003).
    [3]Biloiu, C., Biloiu, I. A., Sakai, Y., Suda, Y., Ohta, A., "Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: deposition, morphology, structural and chemical properties", J. Vac. Sci. Technol. A, 22, 13-19 (2004).
    [4]Xu, X., Li, L., Wang, S., Zhao, L., Ye, T., "Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure", Plasma Sources Sci. Technol., 16, 372-376 (2007).
    [5]Chou, J. S., Lee, S. C., "Effect of porosity on infrared-absorption spectra of silicon dioxide", J. Appl. Phys., 77, 1805-1807 (1995).
    [6]Fracassi, F., Lamendola, R., "PECVD of SiOxNyCzHw thin films from hexamethyldisilazane containing feed. Investigation on chemical characteristics and aging behavior", Plasmas Polym., 2, 25-40 (1997).
    [7]Han, L. M., Timmons, R., Lee, R. B., W., W., "Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films", J. Vac. Sci. Technol. B, 18, 799-804 (2000).
    [8]Kim, M. T., Lee, J., "Characterization of amorphous SiC:H films deposited from hexamethyldisilazane", Thin Solid Films, 303, 173-179 (1997).
    [9]Grill, A., Patel, V., "Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane", J. Appl. Phys., 85, 3314- 3318 (1999).
    [10]Parsons, G. N., Souk, J. H., Batey, J., "Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition", J. Appl. Phys., 70, 1553-1560 (1991).
    第六章
    [1]劉志宏,『應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究』,中原大學化學工程學系,博士論文,民國94年。
    [2]Vinogradov, I. P., Dinkelmann, A., Lunk, A., "Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD)", Surf. Coat. Tech., 174-175, 509-514 (2003).
    [3]Biloiu, C., Biloiu, I. A., Sakai, Y., Suda, Y., Ohta, A., "Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: deposition, morphology, structural and chemical properties", J. Vac. Sci. Technol. A, 22, 13-19 (2004).
    [4]Xu, X., Li, L., Wang, S., Zhao, L., Ye, T., "Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure", Plasma Sources Sci. Technol., 16, 372-376 (2007).
    [5]Chou, J. S., Lee, S. C., "Effect of porosity on infrared-absorption spectra of silicon dioxide", J. Appl. Phys., 77, 1805-1807 (1995).
    [6]Fracassi, F., Lamendola, R., "PECVD of SiOxNyCzHw thin films from hexamethyldisilazane containing feed. Investigation on chemical characteristics and aging behavior", Plasmas Polym., 2, 25-40 (1997).
    [7]Han, L. M., Timmons, R., Lee, R. B., W., W., "Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films", J. Vac. Sci. Technol. B, 18, 799-804 (2000).
    [8]Kim, M. T., Lee, J., "Characterization of amorphous SiC:H films deposited from hexamethyldisilazane", Thin Solid Films, 303, 173-179 (1997).
    [9]Grill, A., Patel, V., "Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane", J. Appl. Phys., 85, 3314- 3318 (1999).
    [10]Parsons, G. N., Souk, J. H., Batey, J., "Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition", J. Appl. Phys., 70, 1553-1560 (1991).
    第七章
    [1]劉志宏,『應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究』,中原大學化學工程學系,博士論文,民國94年。
    [2]Vinogradov, I. P., Dinkelmann, A., Lunk, A., "Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD)", Surf. Coat. Tech., 174-175, 509-514 (2003).
    [3]Biloiu, C., Biloiu, I. A., Sakai, Y., Suda, Y., Ohta, A., "Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: deposition, morphology, structural and chemical properties", J. Vac. Sci. Technol. A, 22, 13-19 (2004).
    [4]Xu, X., Li, L., Wang, S., Zhao, L., Ye, T., "Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure", Plasma Sources Sci. Technol., 16, 372-376 (2007).
    [5]Chou, J. S., Lee, S. C., "Effect of porosity on infrared-absorption spectra of silicon dioxide", J. Appl. Phys., 77, 1805-1807 (1995).
    [6]Fracassi, F., Lamendola, R., "PECVD of SiOxNyCzHw thin films from hexamethyldisilazane containing feed. Investigation on chemical characteristics and aging behavior", Plasmas Polym., 2, 25-40 (1997).
    [7]Han, L. M., Timmons, R., Lee, R. B., W., W., "Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films", J. Vac. Sci. Technol. B, 18, 799-804 (2000).
    [8]Kim, M. T., Lee, J., "Characterization of amorphous SiC:H films deposited from hexamethyldisilazane", Thin Solid Films, 303, 173-179 (1997).
    [9]Grill, A., Patel, V., "Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane", J. Appl. Phys., 85, 3314- 3318 (1999).
    [10]Parsons, G. N., Souk, J. H., Batey, J., "Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition", J. Appl. Phys., 70, 1553-1560 (1991).
    Advisor
  • Hui Chen(陳暉)
  • Files
  • 943404009.pdf
  • approve in 2 years
    Date of Submission 2009-07-22

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.