Title page for 943404008


[Back to Results | New Search]

Student Number 943404008
Author Tsung-Jen Ho(¦ó©v¤¯)
Author's Email Address stand_ho@itri.org.tw
Statistics This thesis had been viewed 2008 times. Download 1940 times.
Department Chemical and Materials Engineering
Year 2009
Semester 1
Degree Ph.D.
Type of Document Doctoral Dissertation
Language English
Title Design and Modeling Studies of Internally Heat-Integrated Distillation Columns
Date of Defense 2010-01-22
Page Count 83
Keyword
  • Distillation control.
  • Distillation design
  • Dynamic simulation
  • Heat-integration distillation column
  • Ponchon¡VSavarit method
  • Abstract The heat-integrated distillation column, generally called HIDiC, applies the principle of internal heat integration between the rectifying section and the stripping section of a distillation column by increasing the temperature of the rectifying section with a compressor. First part in this work, theoretical stage-to-stage study of a HIDiC based on the Ponchon¡VSavarit method is performed. Several HIDiC design variables, such as the number of theoretical stages, reboiler (or preheater) duty, minimum overall internal heat-transfer rate, and configuration, can easily be interpreted in the Ponchon¡VSavarit (Hxy) diagram. Such an approach brings new insights into and better understanding of the features of HIDiC. A preliminary (or shortcut) HIDiC design procedure using Hxy diagrams is also proposed. The obvious advantages are that the proposed method allows the direct design of a HIDiC, and avoids trial-and-error design in using a commercial simulator. In addition, the proposed graphical method can foresee possible pinch points before requiring use of a rigorous simulator. Furthermore, the proposed graphical estimation of internal stages of a HIDiC is applied to a binary, methanol¡Vwater system, and compared to the rigorous simulation obtained using Aspen Plus.
    Second part of this thesis reports a dynamic simulation study of the internally heat-integrated distillation column (HIDiC) using equilibrium-based models. First, three different HIDiC structures, i.e. an ideal HIDiC, a HIDiC with a preheater, and a HIDiC with a reboiler, are analyzed by control degrees of freedom (DOF). The reboiler is considered to be a necessary part of the HIDiC from DOF analysis, thermodynamic analysis, and engineering judgment. Then, a heuristic HIDiC control configuration including a bottoms reboiler control is proposed. A modular structured simulator for dynamic distillation columns using MESH equations is developed. A typical medium-pressure HIDiC for separation of propylene and propane explored by Olujic et al. [ ] is adopted as numerical examples for dynamic simulation studies.
    Keywords: Heat-integration distillation column, Ponchon¡VSavarit method, Dynamic simulation, Distillation design, Distillation control.
    Table of Content AcknowledgementsI
    Chinese AbstractII
    Abstract III
    Table of ContentsIV
    List of FiguresVI
    List of TablesVIII
    NomenclatureIV
    1.Introduction1
    1.1.Methods for Reducing the Energy Consumption of Distillation1
    1.2.Design and Modeling of HIDiC4
    2.Literature Review7
    3.Extension of Ponchon¡VSavarit Method11
    3.1.Rectifying Section of HIDiC11
    3.2.Stripping Section of HIDiC15
    3.3.Overall Consideration of a HIDiC16
    3.4.Minimum Overall Internal Heat-Transfer Rate20
    3.5.Drawing the McCabe¡VThiele Diagram21
    4.Preliminary Design Procedures and Case Studies25
    4.1.Design Procedures25
    4.2.Illustrative Examples26
    5.Analysis of HIDiC Configurations with Control34
    6.Modeling of the HIDiC with Variable Column Pressure40
    7.Dynamic Simulation for a Propylene-Propane HIDiC System47
    7.1.CS1 Simulation49
    7.2.CS2 Simulation51
    8.Conclusions and Future Studies64
    8.1.Conclusions64
    8.2.Future Work and Expectation65
    Bibliographies69
    Appendix75
    About the Author79
    Reference Olujic, Z.; Sun, L.; de Rijke, A. & Jansens, P. J. Conceptual Design of an Internally Heat-Integrated Propylene-Propane Splitter. Energy 2006, 31, 3083.
      Humphrey, J. L.; Seibert, A. F. & Koort, R. A. Separation Technologies Advances and Priorities. Final Report for US Department of Energy, Office of Industrial Technologiest, Washington DC, 1991.
      Brugma, A. J. Fractional Distillation of Liquid Mixtures. Especially Petroleum, Dutch Patent No. 41.850 1937.
      Brugma, A. J. Process and Device for Fractional Distillation of Liquid Mixtures, More Particularly Petroleum. US Patent 2,295,256 1942.
      Petlyuk, F. B.; Platanov, V. M. & Slavinskii, D. M. Thermodynamically Optimal Method for Separating Multicomponent Mixtures. Intl. Chem. Eng. 1965, 5, 555.
      Wolff, E. A. & Skogestad, S. Operation of Integrated Three Product (Petlyuk) Columns. Ind. Eng. Chem. Res. 1995, 34, 2094.
      Halvorsen, I. J. & Skogestad, S. Optimal Operation of Peltyuk Distillation: Steady State Behaviour. J. Process Control 1999, 9, 407.
      Shah, P. B. Squeeze more out of Complex Columns. Chem. Eng. Progress 2002, 98, 46.
      Wright, R.O. U.S. Patent 2,471,134, 1949.
     Kaibel, G. Distillation Columns with Vertical Partition. Chem. Eng. Tech. 1987, 10, 92¡V98.
     Schultz, M. A.; Stewart, D. G.; Harris, J. M.; Rosenblum, S. P.; Shakur, M. S. & O¡¦Brien, D. E. Reduce Costs with Dividing Wall Columns. Chem. Eng. Progress 2002, 98, 64.
     Freshwater, D. C. The Heat Pump in Multicomponent Distillation Brit. Chem. Eng. 1961, 6, 388.
     Freshwater, D. C. Thermal Economy in Distillation. Trans. Inst. Chem. Eng. 1951, 29, 149.
     Null, H. R. Heat Pump in Distillation. Chem. Eng. Progress 1976, 78, 58.
     Smith, R., Chemical Process Design and Integration, 2nd ed.; John Wiley & Sons Ltd: England, 2005, 341.
     Sulzer Chemtech, Distillation and Heat Pump Technology. Brochure 1991, 22.47.06.40- V.91-100.
     Smith, B. D. Design of Equilibrium Stage Processes; McGraw-Hill Book Co. 1963.
     Huang, K.; Matsuda, K.; Iwakabe, K.; Takamatsu, T. & Nakaiwa, M. Graphical Synthesis of an Internally Heat-Integrated Distillation Column J. Chem. Eng. Japan 2006, 39, 703.
     Aspen Plus V7.0, Aspen Technology Inc., Cambridge, MA. 1981-2008.
     Huang, K.; Nakaiwa, M.; Akiya, T.; Aso, K. & Takamasu, T. A Numerical Consideration on Dynamic Modeling and Control of Ideal Heat-Integrated Distillation Columns. J. Chem. Eng. Japan 1996, 29, 344.
     Huang, K.; Matsuda, K.; Takamatsu, T. & Nakaiwa, M. The Influences of Pressure Distribution on an Ideal Heat-Integrated Distillation Column (HIDiC). J. Chem. Eng. Japan 2006, 39, 652.
     Franks, R. G. E. Modeling and Simulation in Chemical Engineering; John Wiley & Sons, Inc. 1972.
     Choe, Y. S. & Luyben, W. L. Rigorous Dynamic Models of Distillation Columns. Ind. Eng. Chem. Res. 1987, 26, 2158.
     Soave, G. Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chem. Eng. Sci. 1972, 27, 1197.
     Mah, R. S.; Nicholas, J. J. & Wodnik, R. B. Distillation with Secondary Reflux and Vaporization, a Comparative Evaluation, AIChE J. 1977, 23 651.
     Fitzmorris, R. E. & Mah, R. S. H. Improving Distilation Column Design using Thermodynamic Availability Analysis. AIChE J. 1980, 26, 265.
     Haselden, G. G. Distillation Processes and Apparatus. U.S. Patent 4,025,398 1977.
     Seader, J. D. Continuous Distillation Apparatus and Method. U.S. Patent 4,234,391 1980.
     Govind, R. Distillation Column and Process. U.S. Patent 4,615,770 1986.
     Govind, R. Dual Distillation Columns U.S. Patent 4,681,661 1987.
     Shimizu1, K. & Mah, R. S. H. Dynamic Characteristic of Binary SRV Distillation Systems. Comp. & Chem. Eng. 1983, 7, 105.
     Nakaiwa, M.; Huang, K.; Naito, K.; Endo, A.; Owe, M.; Akiya, T.; Nakane, T. & Takamatsu, T., A New Configuration of Ideal Heat-Integrated Distillation Columns (HIDiC). Comp. & Chem. Eng. 2000, 24, 239.
     Iwakabe, K.; Nakaiwa, M.; Huang, K.; Nakanishi, T.; Ohmori, T.; Endo, A. & Yamamoto, T. Performances of an Internally Heat-Integrated Distillation Column (HIDiC) in Separation of Ternary Mixtures. J. Chem. Eng. Japan 2006, 39, 417.
     Aso, K.; Takamatsu, T. & Nakaiwa, M. Heat-Integrated Distillation Column. U.S. Patent 5,873,047 1998.
     Nakaiwa, M.; Huang, K.; Endo, A.; Ohmori, T.; Akiya, T. & Takamatsu, T. Internally Heat-Integrated Distillation Columns: A Review. Chem. Eng. Res. Des. 2003, 81, 162.
     Marcilla, A.; Gomez, A.; Reyes, J. A. & Olaya, M. M. New Methods for Quaternary Systems Liquid¡VLiquid Extraction Tray to Tray Design. Ind. Eng. Chem. Res. 1999, 38, 3083.
     Reyes, J. A.; Gomez, A. & Marcilla, A. Graphical Concepts to Orient the Minimum Reflux Ratio Calculation on Ternary Mixtures Distillation. Ind. Eng. Chem. Res. 2000, 39, 3912.
     Lee, J. W.; Hauan, S. & Westerberg, A. W. Graphical Methods for Reaction Distribution in Reactive Distillation Column. AIChE J. 2000, 46, 1218.
     Daza, O. S.; Perez-Cisneros, E. S.; Bek-Pedersen, E. & Gani, R. Graphical and Stage-to-Stage Methods for Reactive Distillation Column Design. AIChE J. 2003, 49, 2822.
     Luyben, W. L. & Wenzel, L. A. Chemical Process Analysis: Mass and Energy Balances; Prentice-Hall, Inc., 1988.
     Farag, I. H. & Karri, S. B. R. Computer-Aided Graphics in Distillation Columns Design. Computers Educ. 1989, 13, 305.
     Ledanols, J. M. & Ollvera-Fuentes, C. Modified Ponchon¡VSavarit and McCabe¡V Thiele Methods for Distillation of Two-Phase Feeds. Ind. Eng. Chem. Process Des. Dev. 1984, 23, 1.
     Salem, A. B. S. H. & Fekri, M. Rigorous Computation of Binary Distillation Systems. Sep. Sci. Technol. 1994, 29, 1789.
     Campagne, W. v. L. Use Ponchon¡VSavarit in Your Process Simulation, Part 1. Hydrocarb. Process. 1993, 72, 41.
     Campagne, W. v. L. Use Ponchon¡VSavarit in Your Process Simulation, Part 2. Hydrocarb. Process. 1993, 72, 63.
     Govind, R. Analytical Form of the Ponchon¡VSavarit Method for Systems with Straight Enthalpy-Composition Phase Lines. Ind. Eng. Chem. Process Des. 1982, 21, 532.
     Bitter, R. Comments on ¡§Analytical form of the Ponchon¡VSavarit Method for Systems with Straight Enthalpy-Composition Phase Lines¡¨. Ind. Eng. Chem. Process Des. 1983, 22, 684.
     Naito, K.; Nakaiwa, M.; Huang, K.; Endo, A.; Aso, K.; Nakanishi, T.; Nakamura, T.; Noda, H.; & Takamatsu, T. Operation of a Bench-Scale Ideal Heat-Integrated Distillation Column (HIDiC): An Experimental Study, Comp. & Chem. Eng. 2000, 24, 495.
     Huang, K.; Matsuda, K.; Iwakabe, K.; Takamatsu, T. & Nakaiwa, M., Choosing More Controllable Configuration for an Internally Heat-Integrated Distillation Column, J. Chem. Eng. Japan 2006, 39, 818.
     Huang, K.; Wang, S.-J.; Iwakabe, K.; Shan, L.; & Zhu, Q. Temperature Control of an ideal Heat-Integrated Distillation Column (HIDiC). Chem. Eng. Sci. 2007, 62, 6486.
     Grassi, V. G. Rigorous Modeling and Conventional Simulation, in: Luyben, W. L. (Ed.), Practical Distillation Control 1992, 29-47. Van Nostrand Reinhold.
     Kyle, B. G., Chemical and Process Thermodynamics, 3rd ed.; Prentice Hall PTR: New York, 1999.
     de Rijke, A.; Sun, L.; Gadalla, M. A.; Jansens, P. J. & Olujic, Z. Finding an Optimal HIDiC Configuration for Various Industrial Distillation Applications. The 7th World Congress of Chemical Engineering, 2005, Scotland, PI-006.
     Nakaiwa, M.; Huang, K.; Owa, M.; Akiya, T.; Nakane, T.; Sato, M.; Takamatsu, T. & Yoshitome, H. Potential Energy Savings in Ideal Heat-Integrated Distillation Column. Appl. Therm. Eng. 1998, 18, 1077.
     Luyben, W. L., Design and control degrees of freedom. Ind. Eng. Chem. Res. 1996, 35, 2204.
     Luyben, W. L.; Tyreus, B. D. & Luyben, M. L. Plantwide Process Control, McGraw-Hill Book Company, 1999.
     Shinskey, F. G. Energy Conservation through Control, Academic Press, 1978.
     Shinskey, F. G. Process Control System, 4th ed., McGraw-Hill Book Company, 1996.
     Muhrer, C. A.; Collura, M. A. & Luyben, W. L. Control of Vapor Recompression Distillation Columns. Ind. Eng. Chem. Res. 1990, 29, 59.
     Liptak, B. G., Instrument Engineers¡¦ Handbook: Process Control, 3rd ed., Chilton Book Co. 1995.
     Smith, R. Chemical Process Design and Integration, John Wiley & Sons, Ltd., 2005.
     Fukushima, T.; Kano, M.; & Hasebe, S. Dynamics and Control of Heat-Integrated Distillation Column (HIDiC). J. Chem. Eng. Japan 2006, 39,1096.
     Kyle, B. G. Chemical and Process Thermodynamics, 3rd ed., Prentice-Hall, Inc., 1999.
     Luyben, W. L. & Luyben, M. L. Essentials of Process Control, McGraw-Hill Book Company, 1997.
     King, C. J. Separation Processes. 2nd ed., McGraw-Hill Book Co., 1980.
     Huang, K.; Nakaiwa, M.; Akiya, T.; Aso, K. & Takamasu, T. A Numerical Consideration on Dynamic Modeling and Control of Ideal Heat-Integrated Distillation Columns, J. Chem. Eng. Japan 1996, 29, 344.
     Shinskey, F. G. Process Control System, 4th ed., McGraw-Hill Book Company, 1996.
     McCabe, W. L.; Smith, J. C. & Harriott, P. Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill Book Company, 2005.
     Astrom, K. J. & Hagglund, T. PID Controllers: Theory, Deign and Tuning, 2nd ed., Instrument Society of America, 1995.
     Smith, C. A. & Corripio, A. B. Principles and Practice of Automatic Process Control, 3rd ed., John Willey & Sons, Inc. 2006.
     Marlin T. E. Process Control: Designing Processes and Control Systems for Dynamic Performance, 2nd ed., McGraw-Hill Book Company, 2000.
     Mejdell, J. & Skogestad, S. Estimation of Distillation Compositions from Multiple Temperature Measurements Using Partial-Least-Squares Regression. Ind. Eng. Chem. Res. 1991, 30, 2543.
     Baratti, R.; Bertucco, A.; Da Rold, A. & Morbidelli, M. Development of a Composition Estimator for Binary Distillation Columns. Application to a Pilot Plant. Chem. Eng. Sci. 1995, 50, 1541.
     Yeh, T.-M.; Huang, M.-C. & Huang, C.-T. Estimate of Process Compositions and Plantwide Control from Multiple Secondary Measurements Using Artificial Neural Networks. Comp. & Chem. Eng. 2003, 27, 55.
     Hernandez, S. Analysis of Energy-Efficient Complex Distillation Options to Purify Bioethanol. Chem. Eng. Technol. 2008, 31, 597.
     Shizuo Midori; Shuang Ning Zheng & Ikuho Yamada. Azeotropic Distillation Process with Vertical Dividing-Wall Column. Kagaku Kogaku Ronbunshu 2001, 27, 756.
     Luyben, W. L. Process Modeling, Simulation, and Control for Chemical Engineers, 2nd ed., McGraw-Hill Book Company, 1990.
    Advisor
  • Liang-Sun Lee(§õ«G¤T)
  • Files
  • 943404008.pdf
  • approve immediately
    Date of Submission 2010-01-27

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.