Title page for 943209003


[Back to Results | New Search]

Student Number 943209003
Author Chun-Chang Tsai(蔡俊璋)
Author's Email Address No Public.
Statistics This thesis had been viewed 1521 times. Download 11 times.
Department Graduate Institute of Materials Science and Engineering
Year 2006
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title The Activated Effects of Hydrogen Ions under Microwave Irradiation at Different Temperature Ambiance
Date of Defense 2007-06-15
Page Count 68
Keyword
  • hydrogen ions activating
  • layer transfer
  • microwave
  • microwave heating
  • silicon on insulator
  • SOI
  • thermal microwave
  • Abstract In the fast-changing semiconductor industry, silicon on insulator (SOI) depending on its unique structure solves many crucial issues that devices fabricated by conventional bulk silicon processing usually have some problems such as current leakage and heat generation. Recently, NanoClub has developed a Thermal-Microwave (TM) process to make SOI materials so as to avoid the thermal stress between the two dissimilar materials and obtain higher efficiency and higher quality than pure microwave process.
      In this study, the temperature parameter of the ambiance in TM process has been further discussed, which the effects of activated hydrogen ions excited by microwave irradiation in Si were compared with each other at different temperature ambiance. Hydrogen ions can be easy to be excited from Si and form hydrogen bubbles by microwave irradiation above room temperature ambiance, as indicated from experimental results. The numbers and sizes of hydrogen bubbles beneath the sample surface were increased by increasing the temperature of the ambiance. Besides, according to the above results, it could be proved that higher temperature ambiance excited more hydrogen ions in Si and then provided more kinetic energy for the coalescence of hydrogen bubbles. The numbers and sizes of the hydrogen bubbles could be greatly increased under microwave irradiation above 170℃ temperature ambiance.
    Table of Content 總目錄
    中文摘要 I
    英文摘要 II
    誌謝 IV
    總目錄 V
    圖目錄 VII
    表目錄 IX
    第一章 前言 1
    1.1 研究背景 1
    1.2 研究動機 2
    第二章 SOI薄膜轉移技術及機制 4
    2.1 利用Smart-CutTM法製作SOI材料 4
    2.2 氫在半導體矽晶圓中之現象 6
    2.3 薄膜剝離機制 9
    2.3.1 薄膜剝離機制概述 9
    2.3.2 微裂縫成長動力學 10
    第三章 微波理論 29
    3.1 微波簡介 29
    3.2 微波加熱原理 30
    3.2.1 微波與材料間的作用 30
    3.2.2 材料吸收微波的途徑 32
    3.2.3 材料的介電性質 34
    3.2.4 微波加熱法與傳統加熱法之比較 36
    第四章 實驗方法與步驟 43
    4.1 實驗流程 43
    4.1.1 晶圓準備及清洗 43
    4.1.2 離子佈植及晶圓切割 43
    4.1.3 微波活化處理 44
    4.1.4 表面影像分析 45
    第五章 實驗結果與討論 52
    5.1 不同溫度氣氛下微波輻射對矽中氫離子之活化作用 52
    5.1.1 室溫氣氛下微波輻射對矽中氫離子的影響 52
    5.1.2 110℃、130℃、150℃、170℃、190℃及210℃之溫度氣氛下微波輻射對矽中氫離子的影響 53
    第六章 結論 62
    參考文獻 64
    Reference 〔1〕R. R. Schaller, “Moore`s law: past, present and future”, Spectrum, IEEE, Vol. 34, Issue 6, pp. 52-59, Jun 1997.
    〔2〕G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator”, Journal of Applied Physics, Vol. 93, Issue 9, pp. 4955-4978, May 2003.
    〔3〕Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding: Science and Technology, John Wiley, New York, 1999.
    〔4〕M. Bruel, “Silicon on insulator material technology”, Electronics Letters, Vol. 31, Issue 14, pp. 1201-1202, Jul 1995.
    〔5〕T.-H. Lee, “Semiconductor thin film transfer by wafer bonding and advanced ion implantation layer splitting technologies”, Duke University, Ph.D. Dissertation, 1998.
    〔6〕J. M. Osepchuk, “A History of Microwave Heating Applications”, Microwave Theory and Techniques, IEEE Transactions on, Vol. 32, Issue 9, pp. 1200-1224, Sep 1984.
    〔7〕J.-T. Cheng, et al., “Thermal-microwave hybrid SOI materials technology”, Proceedings-Electrochemical Society, Vol. 2, Issue 19, pp. 414-423, May 2005.
    〔8〕T. Höchbauer, “On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage”, Marburg University, Ph.D. Dissertation, 2001.
    〔9〕C. H. Seager and D. S. Ginley, “Studies of the hydrogen passivation of silicon grain boundaries”, Journal of Applied Physics, Vol. 52, Issue 2, pp. 1050-1055, Feb 1981.
    〔10〕D. S. Ginley and D. M. Haaland, “Observation of grain boundary hydrogen in polycrystalline silicon with Fourier transform infrared spectroscopy”, Applied Physics Letters, Vol. 39, Issue 3, pp. 271-273, Aug 1981.
    〔11〕J. K. G. Panitz, D. J. Sharp and C. R. Hills, “Near-surface microstructural modifications in low energy hydrogen ion bombarded silicon”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 3, Issue 1, pp. 1-5, Jan 1985.
    〔12〕N. M. Johnson, et al., “Defects in single-crystal silicon induced by hydrogenation”, Physical Review B, Vol. 35, Issue 8, pp. 4166-4169, Mar 1987.
    〔13〕S. Romani and J. H. Evans, “Platelet defects in hydrogen implanted silicon”, Nuclear Instruments and Methods in Physics Research Section B, Vol. 44, Issue 3, pp. 313-317, Jan 1990.
    〔14〕G. F. Cerofolini, et al., “Hydrogen-related complexes as the stressing species in high-fluence, hydrogen-implanted, single-crystal silicon”, Physical Review B, Vol. 46, Issue 4, pp. 2061-2070, Jul 1992.
    〔15〕M. Gao, et al., “A transmission electron microscopy study of microstructural defects in proton implanted silicon”, Journal of Applied Physics, Vol. 80, Issue 8, pp. 4767-4769, Oct 1996.
    〔16〕W. K. Chu, et al., “Distribution of irradiation damage in silicon bombarded with hydrogen”, Physical Review B, Vol. 16, Issue 9, pp. 3851-3859, Nov 1977.
    〔17〕C. G. Van de Walle, et al., “Theory of hydrogen diffusion and reactions in crystalline silicon”, Physical Review B, Vol. 39, Issue 15, pp. 10791-10808, May 1989.
    〔18〕K. J. Chang and D. J. Chadi, “Hydrogen bonding and diffusion in crystalline silicon”, Physical Review B, Vol. 40, Issue 17, pp. 11644-11653, Dec 1989.
    〔19〕T. Hara, et al., “H+ implantation in Si for the void cut SOI manufacturing”, Ion Implantation Technology. Proceedings of the 11th International Conference on, pp. 45-48, Austin, TX, USA, Jun 1996.
    〔20〕Bo Chen, “Mechanisms of layer-transfer related to silicon-on-insulator structures”, New Jersey Institute of Technology, Ph.D. Dissertation, May 2004.
    〔21〕I. Radu, “Layer transfer of semiconductors and complex oxides by helium and/or hydrogen implantation and wafer bonding”, Martin Luther University, Ph.D. Dissertation, Nov 2003.
    〔22〕C. M. Varma, “Hydrogen-implant induced exfoliation of silicon and other crystals”, Applied Physics Letters, Vol. 71, Issue 24, pp. 3519-3521, Dec 1997.
    〔23〕L. Huang, “Layer transfer of semiconductor and insulator materials by wafer bonding and hydrogen implantation”, Duke University, Ph.D. Dissertation, Mar 1999.
    〔24〕A. K. El-Senussi and J. P. H. Webber, “On the double cantilever beam technique for studying crack propagation”, Journal of Applied Physics, Vol. 56, Issue 4, pp. 885-889, Aug 1984.
    〔25〕H. M. Kingston and L. B. Jassie, Introduction to Microwave Sample Preparation: Theory and Practice, American Chemical Society, Washington, D.C., 1988.
    〔26〕D. Michael, P. Mingos and D. R. Baghurst, “Application of microwave dielectric heating effects to synthetic problems in chemistry”, Chemical Society Reviews, Vol. 20, Issue 1, pp. 1-47, 1991.
    〔27〕D. E. Clark and W. H. Sutton, “Microwave Processing of Materials”, Annual Review of Materials Science, Vol. 26, pp. 299-331, Aug 1996.
    〔28〕B. Krieger, R. D. Allen and D. W. Tredinnick, “Industrial microwave technology”, Annual Meeting of the Rubber Division of the American Chemical Society.
    〔29〕http://rpaulsingh.com/teaching/LectureHandouts/microwave_handout.pdf
    〔30〕曾信富,「微波加熱處理與材料特性分析」,國立清華大學,碩士論文,民國95年。
    〔31〕高健玲,「微波加熱與微波萃取教學與實驗教材之設計」,國立高雄師範大學,碩士論文,民國91年。
    〔32〕A. Bhaskar, et al., “Low-temperature crystallization of sol-gel-derived lead zirconate titanate thin films using 2.45 GHz microwaves”, Thin Solid Films, Vol. 515, Issue 5, pp. 2891-2896, Jan 2007.
    〔33〕小川洋輝,崛池靖浩著,半導體潔淨技術,顏誠廷譯,普林斯頓國際有限公司,臺北縣,民國92年。
    〔34〕G. A. Samara, “Temperature and pressure dependences of the dielectric constants of semiconductors”, Physical Review B, Vol. 27, Issue 6, pp. 3494-3505, Mar 1983.
    Advisor
  • Tien-Hsi Lee(李天錫)
  • Files
  • 943209003.pdf
  • disapprove authorization
    Date of Submission 2007-07-13

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.