Title page for 943208012


[Back to Results | New Search]

Student Number 943208012
Author Jhih-jie You(游智傑)
Author's Email Address 943208012@cc.ncu.edu.tw
Statistics This thesis had been viewed 1656 times. Download 233 times.
Department Energy of Mechatronics
Year 2006
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Quantitative Measurements of A Low-NOx Burner with the Consideration of Hydrogen Addition
Date of Defense 2007-07-10
Page Count 78
Keyword
  • hydrogen addition
  • low-NOx burner
  • particle image velocimetry
  • turbulent burning velocity
  • wavelet transform
  • Abstract In 1995, Bédat & Cheng (B & C) proposed a low swirl burner which can enhance flame stability, reduce NOx formation and increase thermal efficiency. In this study we apply the concept of B & C to design and make a low swirl jet burner (LSJB) for measurements of turbulent burning velocities (ST) and investigation of the effect of hydrogen addition for the first time. Lean methane doping with 0 ~ 30% hydrogen by volume as a fuel is used. Quantitative measurements of velocity fields including both average velocities (U) and r.m.s turbulent intensities (u') from the nozzle exit to the stabilized bowl-shape flame and above are obtained using high-speed particle imaging velocimetry (PIV). The value of ST is chosen as the value of U just at the bottom position of the stabilized bowl-shape flame. Identification of the stable operation ranges between flashback and blowoff limits of the LSJB is also made over a range of a swirling number (S) defined as the ratio of the axial flux of the angular momentum divided by the radius of the burner exit to the axial flux of the linear momentum, and the jet Reynolds number (Rej). We apply the wavelet transform (WT) to analyze spatiotemporal scales of the LSJB using these PIV time sequent data for the first time. [NOx] and [CO] in the products are measured by the gas analyzer. Thus, the knowledge of hydrogen addition on lean premixed combustion can be learned. The results show that the stable combustion ranges of S for the LSJB becomes narrower with increasing Rej. PIV measurements indicate that at the same lowermost point of the bowl-shaped flame, U of nonreacting cold flow is twice more in magnitude than that of reacting hot flow with about the same u'. Probability density functions and energy spectra of reacting hot flows indicate that the present flow is not isotropic and this result differs with that found by B & C. The spatial characteristic length scales, approximate to the Taylor length scale, determined from the axial and radial velocity data along the nozzle axis using WT are found to be approximately the same as the thicknesses of a mean progress variable (flame brush thickness), about 0.8 cm. Temporal characteristic scales are also identified by the WT analysis and both values are roughly the same in both axial and radial directions. The measured values of ST and u' are found to increase with increasing Rej, at least in the range of Rej = 4,700 ~ 11,000, where errors of values of ST and u' at a fixed Rej cannot be neglected especially when S approaching blowoff limits. Moreover, by adding a small amount of hydrogen [CO] can be significantly reduced with only a slightly increase of [NOx]. As the hydrogen addition increases from 0% to 30%, values of ST can be increased 30% more the increases of u' smaller than 10%, and [NOx] and [CO] vary from 0 to 1.7 ppm and from 5,500 to 2,500 ppm, respectively. Hence, it is concluded that the present LSJB cannot be as a benchmark device for accurate measurements of ST, but it is indeed an excellent low-NOx burner which can be need in many practical applications such as gas turbines for electricity generation.
    Table of Content 目錄
    摘要I
    英文摘要II
    誌謝IV
    目錄V
    圖表目錄VIII
    符號說明XI
    第一章 前言1
    1.1研究動機1
    1.2問題所在2
    1.3解決方法3
    1.4論文架構4
    第二章 文獻回顧5
    2.1預混紊流燃燒器設計5
    2.2預混紊流燃燒理論6
    2.3預混紊流燃燒簡介6
    2.4漩渦火焰之原理8
    2.4.1漩渦流場特性8
    2.4.2漩渦流產生方式9
    2.4.3漩渦火焰和燃燒器10
    2.5加氫燃燒研究11
    2.6污染物影響13
    第三章 實驗設備與方法19
    3.1低氮氧化物燃燒器19
    3.2燃氣供應系統20
    3.2.1實驗氣體與流量控制混合裝置20
    3.2.2實驗操作條件21
    3.3雷射斷層攝影術(Laser tomography)22
    3.4高速質點影像測速技術(Particle image velocimetry)24
    3.5紊流燃燒速度之量測分析25
    3.6生成物濃度量測26
    3.7實驗流程27
    第四章 結果與討論34
    4.1低氮氧化物燃燒器穩定操作範圍34
    4.2漩渦流場特性34
    4.2.1漩渦冷熱流場特性35
    4.2.2 PIV誤差分析36
    4.3預混紊流燃燒速度37
    4.3.1紊流燃燒速度之量測37
    4.3.2漩渦數對紊流燃燒速度影響37
    4.4加氫效應38
    4.4.1燃燒器操作範圍38
    4.4.2廢氣量測比較39
    4.4.3紊流燃燒速度差異39
    第五章 結論與未來工作57
    5.1結論57
    5.2未來工作57
    參考文獻59
    Reference Abdel-Gayed, R., Bradley, D. & Lawes, M. 1987 Turbulent burning velocities: a general correlation in terms of straining rates. Proc. R. Soc. Lond. A 414, 389-413.
    Aldredge, R. C., Vaezi, V. & Ronney, P. D. 1998 Premixed flame propagateion in turbulent Taylor-couette flow. Combust. Flame 115, 395-405.
    Bédat, B. & Cheng, R. K. 1995 Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame 100, 486-494.
    Bradley, D. 1992 How Fast Can We Burn? Proc. Combust. Inst. 24, 247-262.
    Chen, C. K., Lau., K. S., Chin, W. K. & Cheng, R. K. 1992 Freely propagation open premixed turbulent flames stabilized by swirl. Proc. Combust. Inst. 24, 511-518.
    Chen, R. H. & Driscoll, J. F. 1988 The role of the recirculation vortex in improving fuel-air mixing within swirling flames. Proc. Combust. Inst. 22, 531-540.
    Cheng, R. K. 1995 Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl. Combust. Flame 101, 1-14.
    Cheng, R. K., Fable, S. A., Schmidt, D., Arellano, L. & Smith, K. O. 2001 Development of a low swirl injector concept for gas turbines. Processings of International Joint Power Conference, New Orleans, Louisiana, USA, June 4-7.
    Cheng, R. K., Yegian, D. T., Miyasato, M. M., Samuelsen, G. S., Benson, C. E., Pellizzari, R. & Loftus, P. 2000 Scaling and development of low-swirl burners for low emission furnaces and boilers. Proc. Combust. Inst. 28, 1305-1313.
    Chigier, N. A. & Chervinsky, A., 1967 Experimental investigation of swirling vortex motion in jets. J. Appl. Mech. 34, 443-451.
    Cho, P., Law, C. K., Hertzbeqrg, J. H. & Cheng, R. K. 1986 Structure and propagation of turbulent premixed flames stabilized in a stagnation flow. Proc. Combust. Inst. 21, 1493-1499.
    Claypole, T. C. & Syred, N. 1980 The effect of swirl burner aerodynamics on NOx formation. Proc. Combust. Inst. 18, 81-89.
    Damköhler, G. 1940 The effect of turbulent on the flame velocity in gas mixtures. Z. Elektrchem. 46, 601-652.
    Energy Information Administration 2007 International Energy Outlook. Rep. No. DOE/EIA-0484 (http://www.eia.doe.gov/oiaf/ieo).
    Gupta, A. K., Lilley, D. G. & Syred, N. 1984 Swirl Flows. Abacus Press, Tunbridge Wells, England.
    Johnson, M. R., Littlejohn, D., Nazeer, W. A., Smith, K. O. & Cheng, R. K. 2005 A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proc. Combust. Inst. 30, 2867-2874.
    Kido, G. A., Huang, S., Tanoue, H. & Nitta, T. 1994 Improving the combustion performance of lean hydrocarbon mixtures by hydrogen addition. JSME Review 15, 165-167.
    Law, C. K., Zhu, D. L. & Yu, G. 1986 Propagation and extinction of stretched premixed flames. Proc. Combust. Inst. 21, 1419-1426.
    Plessing, T., Kortshik, C., Peters, N., Mansour, M. S. & Cheng, R. K. 2000 Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proc. Combust. Inst. 28, 359-366.
    Shy, S. S., Lee, E. I., Chang, N. W. & Yang, S. I. 2000a Direct and indirect measurements of flame surface density, orientation, and curvature for premixed turbulent combustion modeling in a cruciform burner. Proc. Combust. Inst. 28, 383-390.
    Shy, S. S., Lin, W. J. & Peng, K. Z. 2000b High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner. Proc. Combust. Inst. 28, 561-568.
    Shy, S. S., Lin, W. J. & Wei, J. C. 2000c An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion. Proc. R. Soc. Lond. A 456, 1997-2019.
    Syred, N. & Beér, J. M. 1974 Combustion in swirling flows: a review. Combust. Flame 23, 143-201.
    Turns, S. R. 2002 An introduction to combustion. 2nd Edition, McGraw-Hill.
    Glassman, I. 1996 Combustion. 3rd Edition, Academic press.
    Uykur, C., Henshaw, P. F., Ting, D. S. K. & Barron, R. M., 2001 Effects of addition of electrolysis products on methane/air premixed laminar combustion. Int. J. Hydrogen Energy 26, 265-273.
    Yang, T. S., Shy, S. S. & Chyou, Y. P. 2005 Spatiotemporal intermittency measurements in a gas-phase near-isotropic turbulence using high-speed DPIV and wavelet analysis. J. Mech. 21, 157-169.
    Yegian, D. T. & Cheng, R. K. 1998 Development of lean premixed low-swirl burner for low NOx practical application. Combust. Sci. Tech. 139, 207-227.
    Yetter, R. A., Glassman, I. & Gabler, H. C. 2000 Asymmetric whirl combustion: a new low NOx approach. Proc. Combust. Inst. 28, 1265-1272.
    Yu, G., Law, C. K. & Wu, C. K. 1986 Laminar flame speed of hydrocarbon + air mixtures with hydrogen addition. Combust. Flame 63, 339-347.
    尹偉光 1996 預混紊流燃燒:風扇擾動式燃燒器之冷流場量測及其未來發展。 碩士論文,國立中央大學機械工程研究所。
    林文基 1999 甲烷與丙烷預混紊流燃燒速度的量測。 碩士論文,國立中央大學機械工程研究所。
    林孟良 1998 氣態預混紊流燃燒速度量測於一近似均勻等向性紊流場。 碩士論文,國立中央大學機械工程研究所。
    陳彥志 2002 潔淨能源:高效率天然氣加氫燃燒技術與汙染排放物定量量測。 碩士論文,國立中央大學機械工程研究所。
    黃逸芳 2006 氫燃燒器與低氮氧化物燃燒器實作研究。 碩士論文,國立中央大學機械工程研究所。
    魏建樟 1999 應用雷射斷層攝影術探討預混紊焰傳播。 碩士論文,國立中央大學機械工程研究所。
    Advisor
  • Shenq-yang Shy(施聖洋)
  • Files
  • 943208012.pdf
  • approve in 2 years
    Date of Submission 2007-07-23

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.