Title page for 943203009


[Back to Results | New Search]

Student Number 943203009
Author Shun-wu Wang(王順武)
Author's Email Address 943203009@cc.ncu.edu.tw
Statistics This thesis had been viewed 1206 times. Download 144 times.
Department Mechanical Engineering
Year 2006
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Effect of process parameters on the resistance of carbon nanotube vias
Date of Defense 2007-06-22
Page Count 124
Keyword
  • carbon nanotubes
  • integrated-circuit(IC)
  • interconnect
  • resistance
  • via
  • Abstract This research is using integrated-circuit(IC)photolithography to manufacture the structure of interconnect via in silicon wafer. We use microwave plasma chemical vapor deposition(MPCVD)to grow carbon nanotubes(CNTs)in the via to control the growth of vertically in-situ carbon nanotubes and achieve replacing the metal in the via with CNTs. We design a single-via and array-via in the same region with three different metals(Ti, Ta and Al)bottom electrode. Finally, we deposit the top electrode with Ti, Ta or Al to connect with CNTs to form CNT diode structure. Then we use SEM, Raman spectroscopy, and I-V system to analysis diode structure. We discuss the effect of process parameters on the properties and the diode resistances of CNTs in single and array via, and compare the conductive performance of diode with Ti , Ta and Al bottom electrode.
    This research is using low temperature manufacture to match up the IC manufacture and aluminum melting point. The temperature which we selected from 350℃ to 500 ℃ and we use bias to increase the growth of CNTs. From the result, We find that multi-wall carbon nanotube(MWNT) diameter decreases with increase of substrate temperature and bias; and the degree of graphitization of MWNTs increases with the increase of substrate temperature and bias. Consequently, the diode resistance of MWNTs in both single and array vias decreases with the increase of MWNT graphitization. In the same via region, the MWNT diode resistances of the array vias are lower than those of the single vias; the MWNT diode resistances with the Ti bottom electrode are lower than those with the Ta or Al bottom electrode. And we also select diffecent top electrode with Ti, Ta and Al, and then compare it. The diode resistance with Ti top electrode are almose the same with Ta top electrode and lower with Al top electode. Thus, in this research we use Ta top electode and Ti bottom electode, PP: 1200 W, PG: 1200 W, Temp. : 500 ℃, CH4 flow ratio: 30%, and bias: 200 Volt, we measure the best degree of graphitization (38%) and the lowest MWNT diode resistance (71 Ω).
    Table of Content 摘要i
    英文摘要iii
    謝誌v
    總目錄vi
    圖目錄viii
    表目錄xiv
    符號說明xv
    第一章 緒論1
    1-1 前言1
    1-2 研究動機與目的2
    第二章 文獻回顧5
    2-1 碳奈米管的起源5
    2-2 碳奈米管的結構8
    2-3 碳奈米管之成長機制12
    2-4 碳奈米管之合成技術13
    2-5 碳奈米管之特性與應用18
    第三章 實驗方法與設備24
    3-1 實驗流程24
    3-2 二極體元件製作流程26
    3-3 實驗儀器簡介31
    3-4 碳奈米管品質的分析方法36
    3-5 Surface energy的介紹38
    第四章 結果與討論40
    4-1 製程參數對碳奈米管型態的影響40
     4-1-1 前處理時間對碳奈米管型態的影響41
     4-1-2 基板溫度對碳奈米管型態的影響42
     4-1-3 負偏壓對碳奈米管型態的影響43
    4-2 製程參數對碳奈米管石墨化程度的影響44
     4-2-1 前處理時間對碳奈米管石墨化程度的影響44
     4-2-2 基板溫度對碳奈米管石墨化程度的影響45
     4-2-3 負偏壓對碳奈米管石墨化程度的影響45
    4-3 以碳奈米管所製作出的二極體元件其電性的探討46
     4-3-1 碳奈米管型態對二極體元件電性的影響46
     4-3-2 碳奈米管石墨化程度對二極體元件電性的影響48
     4-3-3 在相同範圍面積下陣列引洞結構與單一引洞結構所
        成長碳奈米管對二極體元件電性的影響50
     4-3-4 不同下電極金屬對二極體元件電性的影響52
    4-4 利用等效電路來分析陣列引洞結構其電阻值53
    第五章 結論99
    參考文獻100
    Reference [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354(1991)56
    [2] M. F. Yu et al., “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load”, Science, 287 (2000) 637
    [3] M. F. Yu et al., “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties”, Physical Review Letters, 84 (2000) 5552
    [4] J. Z. Liu et al., “Mechanical properties of single-walled carbon nanotube as bulk materials”, Journal of Mechanics and Physics of solids, 53 (2005) 123
    [5] K. B. K. Teo et al., “Catalytic synthesis of carbon nanotubes and nanofibers”, Encyclopedia of Nanoscience and Nanotechnology, (2003) 1
    [6] K. B. K. Teo et al., “Carbon nanotube technology for solid state and vacuum electronics”, IEE Proc.-Circuits Devices Syst.(2004)408
    [7] A. Jacey, J. Guo et al., “Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics”, Nano Letters, 4 (2004) 447
    [8] K. Tsukagoshi et al., “Carbon nanotube devices for nanoelectronics”, Physics B, 323 (2002) 107
    [9] S. B. Lee et al., “Study of muti-walled carbon nanotube structures fabricated by PMMA suspended dispersion”, Microelectronic Engineering, 61-62 (2002) 475
    [10] K. B. K. Teo et al., “Carbon nanotube technology for solid state and vacuum electronics”, IEE Proc.-Circuits Devices Syst., (2004) 408
    [11] A. K. M. F. Kibria et al., “Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium”, International Journal of Hydrogen Energy, 26(2001)823
    [12] G. E. Froudakis, “Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake”, Nano Letters, 1(2001)531
    [13] Hao Tang et al., “Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube (CNT) arrays for methanol oxidation”, Materials Chemistry and Physics Volume: 92, Issue: 2-3, (2005) 548-553
    [14] Z. Dehouche et al., “The catalytic effect of single-wall carbon nanotubes on the hydrogen sorption properties of sodium alanates”, Nanotechnology, 16(2005)402
    [15] J. N. Wohlstadter et al. “Carbon nanotube-based biosensor”, Advanced Materials, 15 (2003) 1184
    [16] P. He, L. Dai, “Aligned carbon nanotube-DNA electrochemical sensors”, Chem. Commun., (2004) 348
    [17] J. J. Gooding, “Nanostruturing electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing”, Electrochimica Acta, 50 (2005) 3049
    [18] Y. Cheng, O. Zhou, “Electron field emission from carbon nanotubes”, C. R. Physique, 4 (2003) 1021
    [19] J. A. Misewich et al., “Electrically induced optical emission from a carbon nanotune FET”, Science, 300 (2003) 783
    [20] R. K. Gupta, I. Dwivedy, ”International patenting activity in the field of carbon nanotubes”, Current Applied physics, 5 (2005) 163
    [21] M.J. Yacaman et al., “Catalytic growth of carbon microtubules with fullerene structure”, Appl. Phys. Lett., 62(1993)202
    [22]Ho Jung Hwang, Jeong Won Kang, “Carbon-nanotube-based nano-electromechanical switch”, Physical E27, (2005) 163-175
    [23] Kreupl F. et al., “Carbon nanotubes in interconnect applications”, Microelectron Eng., 64(2002)399
    [24] J. Li et al., “Bottom-up approach for carbon nanotube interconnects”, Appl. Phys. Lett., 82(2003)2491
    [25] N. Srivastava, K. Banerjee, “Interconnect challenges for nanoscale electronic circuits”, Jom, 56(2004)30
    [26]B. Q. Wei et al.,”Reliability and current carrying capacity of carbon nanotubes,” Appl. Phys. Lett., v 79, (2001) p1172-1174
    [27] S. Frank et al., “Carbon nanotube quantum resistors”, Science, 280(1998)1744
    [28] 網頁資料Http://www.future-fab.com/documents.asp
    [29] 楊正杰, 奈米通訊第七章第四期
    [30] Proceeding of Meeting of the International Technology Roadmap for Semiconductors ( ITRS ), December 2006
    [31]J. Phys. Chem, “Structures and electronic properties of peanut-shaped dimers and carbon Nanotubes”, Journal of Physical Chemistry B, v 109, n 21,(2005) p 10957-10961
    [32] S. Iijima, T.Ichihashi, Nature, 363(1993)603
    [33] D.S. Bethune, C.H. Kiang, M.S. Deveries, Nature, 363(1993)605
    [34]Wolfgang Hoenlein et al., ”Carbon nanotube applications in microelectronics”, IEEE transactions on components and packaging technologies, v27, (2004) n4
    [35]Rice University:Rick Smalley’s Group Home Page-Image Gallery
    [36] T. W. Odom﹐J. L. Huang﹐P. Kim﹐C. M. Lieber﹐J. Phys. Chem. B, 104(2000)2794
    [37] 網頁資料 Http://endomoribu.shinshu-u.ac.jp/research/cnt/composit.html
    [38] 網頁資料 Http://theor.jinr.rudisordernano.html
    [39] TH. Henning, F. Salama, “Carbon in the universe”, Science, 282(1998)2204
    [40] 成會明, 張勁燕, “奈米碳管”, 五南圖書出版股份有限公司
    [41] Saito et al., Appl. Phys. Lett., 60 (1992) 2204
    [42] R. T. K. Baker, R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene”, Journal of catalysis, 26 (1972) 51
    [43] Y.S. Park et al., “Low pressure synthesis of single-walled carbon nanotubes by arc discharge”, Synthetic Metals, 126(2002)245
    [44] T.W. Ebbesen et al., “Purification of nanotubes”, Nature, 367(1994)519
    [45] M.J. Yacaman et al., “Catalytic growth of carbon microtubules with fullerene structure”, Appl. Phys. Lett., 62(1993)202
    [46] Sergei Lebedkin et al., “Single-wall carbon nanotubes with diameters approaching 6 nmobtained by laser vaporization,” Carbon, 40 (2002) 417–423
    [47] A. Thess et al., ”Crystalline ropes of metallic carbon nanotube,” Science, 273 (1996) 483
    [48] R. Andrewsa, D. Jacques, “Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization”, Chem. Phys. Lett., 303(1999)467
    [49] J.H. Han et al., “Effects of growth parameters on the selective area growth of carbon nanotubes”, Thin Solid Films, 409(2002)126
    [50]Y.S. Woo et al., “In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition”, Diamond and Related Materials, 11(2002)59
    [51]粘正勳,國立中央大學物理系。網頁資料
    http://www.ncu.edu.tw/~ncu7450/nanoedu/nanoeducation-course.php
    [52]網頁資料Http://taiwan.cnet.com
    [53] Proceeding of Meeting of the International Technology Roadmap for Semiconductors ( ITRS ), December 2002
    [54] R. Martel et al., “Singleand multi-wall carbon nanotube field-effect transistor”, Applied Physics Letters, 73 (1998) 2447
    [55] Y. Zhang et al., “Electric-field-directed growth of aligned single-walled carbon nanotube”, Applied Physics Letters, 79 (2001) 3155
    [56] 網頁資料 http://www.ipt.arc.nasa.gov/Graphics/rdd_talk.pdf
    [57] 網頁資料Http://www.nanoscience.com
    [58] Dai HJ, Hafner JH, Rinzler AG, et al. Nature, 147(1996)384
    [59] Jing Kong et al., “Nanotube Molecular Wires as Chemical Sensors”, Science, (2000)287
    [60] Wei BQ, Vajtai R, Ajayan PM, “Reliability and current carrying capacity of carbon nanotube”, Appl Phys Lett, 79(2001)1172
    [61] Kim P, Shi L, Majumdar A, McEuen PL, “Thermal transport measurements of individual multiwalled nanotubes”, Phys Rev Lett, 87(2001)215502
    [62] W.A. Zisman, Adv. Chem., 43 (1964) 1
    [63] F.M. Fowkes, Adv. Chem., 43 (1964) 1
    [64] S. Wu, Adv. Chem., 43 (1964) 1
    [65] D.K. Owens, R.C. Wendt, J. Appl. Polymer Sci., 13 (1969) 1741
    [66] KUIXIANG MA et al., “Surface Energy of Thermotropic Liquid Crystalline Polyesters and Polyesteramide”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 36, (1998) 2327–2337
    [67]Ruth Y. Zhang et al., ”Chemical vapor deposition of single-Walled carbon Nanotubes Using Ultrathin Ni/Al Film as Catalyst”, Nano letter, Vol.3, (2003) 731-735
    [68] Se-Jin Kyung et al., “Field emission properties of carbon nanotubes synthesized by capillary type atmospheric pressure plasma enhanced chemical vapor deposition at low temperature”, Carbon, 44(2006)1530
    [69] Matthew R. Maschmann et al., ”Freestanding vertically oriented single-walled carbon”, Carbon, (2006) 2758–2763
    [70] F. Wakaya, K. Katayama, K. Gamo, “Contact resistance of multiwall carbon nanotubes”, Microelectronic Engineering, 67(2003)853
    [71] M.P. Anantram, “Coupling of carbon nanotubes to metallic contacts”, Phys. Rev. B, 14(2000)221
    [72] D.J. Yang et al., “Thermal and electrical transport in multi-walled carbon nanotubes”, Physics Letters A, 329(2004)207
    Advisor
  • Fuang-Yuan Huang(黃豐元)
  • Files
  • 943203009.pdf
  • approve in 2 years
    Date of Submission 2007-07-03

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.