Title page for 942406012


[Back to Results | New Search]

Student Number 942406012
Author Chi-wen Kuo(_)
Author's Email Address No Public.
Statistics This thesis had been viewed 1177 times. Download 694 times.
Department Optics and Photonics
Year 2009
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language English
Title The Optoelectronic Characteristics of Nitride-Based Light Emitting Diode Grown by Metal-organic Chemical Vapor Deposition
Date of Defense 2010-06-04
Page Count 130
Keyword
  • Blue LED
  • Buffer layer
  • GaN
  • IPS LED
  • Nano-rod GaN
  • Abstract Through metal-organic chemical vapor deposition (MOCVD) to grow nitride-based materials, this dissertation mainly analyzes the characteristics of the nitride-based materials and optoelectronic semiconductor. The research focuses on GaN film and nitride-based blue LED, including advanced buffer layers, pendeo-expitaxy on nano-scaled template, and the development of nitride-based blue LED with the geometric sidewalls.
    On one hand, we developed a double buffer layers- MgxNy/AlN. Judging from the result of X-ray analysis and Hall measurement, the high quality GaN could be obtained by the features of these buffer layers to reduce dislocation. Compared with GaN on conventional AlN buffer layer and MgxNy/AlN double buffer layers, the dislocation density of GaN film can be effectively reduced from 3.7108 cm-2 to 9.0107 cm-2 from the result of etching pits density (EPD).
    On the other hand, we broke fresh ground in pendeo-expitaxy without lithographic process. We produced nano-rod GaN template (NR GaN template), with high aspect ratio by Ni as metal hard mask. By adjusting the growing condition, GaN was directly grown on NR GaN template without buffer layers. Judging from the result of Hall measurement and X-ray analysis, implementing pendeo-expitaxy to grow GaN film on the NR GaN template can acquire better quality. From result of EPD, the dislocation density of GaN film could be reduced to 1.9108 cm-2 by using NR GaN template. In addition, the following experiment makes further research on n-GaN/MQW/p-GaN LED structure directly grown on the NR GaN template. This has been profited by saving growth time of buffer layer and unintentionally doped GaN layer when LED structure was grown on nano-rod GaN template. In terms of the optoelectronic characteristics, there are no obvious differences in electronic properties between NR LED and C LED. The forward voltage is around 3.30V under the electronic current at a 20mA injection; in the meanwhile, the output power of NR LED promotes about 39.8% more than the C LED. The main factor in enhancing the light output power is focused on light extraction and internal quantum efficiency. Not only does the growth of pendeo-expitaxy form the void between the GaN/sapphire interface which increases the effects upon light scattering for light extration, but also the efficiency of internal quantum in NR LED up to 16.9% higher than in C LED which is only about 14.9%.
    Last but not least, we enhance the light extraction efficiency of LED by making changes in geometric structure of LED chip die. We applied the feature of high chemical activity of GaN N-face and developed wet etching without lithographic process to change the sidewall of LED chip die. After the chip process, LED was deposited with SiO2 as hard mask, and then soaked in the mixed acid H2SO4 : H2PO4 = 3 : 2 at 250 oC for four minutes. After this wet etching process, the edge of LED chip die was etched as inverted pyramid structure. Finally, the residue of SiO2 was removed by utilizing buffered oxide etchant (BOE) to complete the fabrication of inverted pyramid sidewalls LED (IPS LED). Compared to conventional LED, it was found that the light output power of IPS LED has enhanced about 27% through the measurement of light characteristics. To go a step further, with the help of Prof. Wu in National Central University, it was found that inverted pyramid structure performs better on confined photons judging from the simulation of by finite-difference time-domain (FDTD). This statistics 24 % is similar to the practical result which reaches to 27%. Further, by taking advantage of the measurement of light power density, a light rectangle was discovered around the edge of IPS LED chip die. The intensity of the light rectangle is obviously higher than the conventional LED. This result responds to the stimulated statistics as well as interprets that inverted pyramid structure can indeed enhance light output power.
    Table of Content Kni
    Abstractii
    Piii
    Contentsv
    List of Tablesvii
    List of Figures Captionsviii
    Chapter 1 Introduction
      1.1Background1
    Chapter 2 Introduction of Metal-organic Vapor Phase Epitaxy System
      2.1Introduction12
      2.2Close-Coupled Showerhead Technology15
      2.3In Situ Monitoring of Epitaxy Growth17
    Chapter 3 Influence of MgxNy/AlN Double Buffer Layers in GaN Epilayer
      3.1Introduction32
      3.2Experimental Procedure35
      3.3Characteristics of Unintentionally Doped GaN with Double MgxNy/AlN Buffer Layers37
      3.4Summary40
    Chapter 4 High Efficiency Nitride-based Blue LED Grown on Nano-rod GaN Template
      4.1Introduction59
      4.2The Fabrication of Nano-rod GaN Template61
      4.3Characteristics of Unintentionally Doped GaN epitaxial layer Grown on Nano-rod GaN Template62
      4.4Characteristics of GaN-based Light-Emitting Diode Grown on Nano-rod GaN Template64
      4.5Summary68
    Chapter 5 High Light Extraction of Nitride-based Blue LED with Inverted Pyramid Sidewalls
      5.1Introduction90
      5.2The Fabrication of GaN-based LED92
      5.3The Experiment Procedure93
      5.4Characteristics of Nitride-based Light-emitting Diodes with Inverted Pyramid Sidewalls95
      5.5Summary100
    Chapter 6 Conclusions and Future Works
      6.1Conclusions123
      6.2Future Works124
    Publication List
    Reference [1] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., Vol. 38, 3976 (1999).
    [2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett., Vol. 70, 1417 (1997).
    [3] R. Juza and H. Hahn, Zeitschr. Anorgan. Allgem. Chem., Vol. 234, 282 (1940).
    [4] H. P. Maruska, and J. J. Tietjen, Appl. Phys. Lett., Vol. 15, 367 (1969).
    [5] J. Pankove, E. Miller, D. Richmann, and J. Berkeyheiser, J. Lumin., Vol. 4, 63 (1971).
    [6] R. Dingle, K. Shaklee, R. Leheny, and R. Zetterstrom, Appl. Phys. Lett., Vol. 19, 5 (1971).
    [7] I. Akasaki, Mater., Res. Soc. Symp., Vol. 510, 145 (1998).
    [8] H. Manasevit, F. Erdman, and W. Simpson, J. Electrochem. Soc., Vol. 118, 1864 (1971).
    [9] T. Kawabata, T. Matsuda, and S. Koike, J. Appl. Phys., Vol. 56, 2367 (1984).
    [10] H. Amano, N. Sawaki, and I. Akasaki, Appl. Phys. Lett., Vol. 48, 353 (1986).
    [11] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., Vol. 28, L2112 (1989).
    [12] S. Nakamura, Jpn. J. Appl. Phys., Vol. 30, L1705 (1991).
    [13] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys., Vol. 31, L139 (1992).
    [14] T. Nishida, H.Saito, and N. Kobayashi, Appl. Phys. Lett., Vol. 79, 711 (2001).
    [15] H. X. Wang, H. D. Li, Y.B. Lee, H. Sato, K. Tamashita, T. Sugahara, and S. Sakai, J. Cryst. Growth, Vol. 264, 48 (2004).
    [16] T. Wang, Y. H. Liu, Y. B. Lee, J. P. Ao, J. Bai, and S. Sakai, Appl. Phys. Lett., Vol. 81, 2508 (2002).
    [17] M. Iwayal, S. Terao, S.Takanami, A.Miyazaki, S. Kamiyama, H. Amano, and I. Akasaki, Phys. Stat. Sol. (C), Vol. 1, 34 (2002).
    [18] T. Nishida, N. Kobayashi, and T. Ban, Appl. Phys. Lett., Vol. 82, 1 (2003).
    [19] S.Nakamura and G. Fasol, The blue laser diode: GaN based light emitters and lasers. (Springer, Berlin, 1997).
    [20] S. H. Yen, Thesis "Numerical investigation of improvement in piezoelectric effect of violet InGaN laser diodes", National Chang-Hua University of Education, Jun. 2008.
    [21] S. F. Chichibu, H. Marchand, M. S. Minsky, S. Keller, P. T. Fini, J. P. Ibbetson, S. B. Fleischer, J. S. Speck, J. E. Bowers, E. Hu, U. K. Mishra, S. P. DenBaars, T. Deguchi, T. Sota, and S. Nakamura, Appl. Phys. Lett., Vol. 74, 1460 (1999).
    [22] S. Figge, T. BoK ttcher, S. Einfeldt, D. Hommel , J. Cryst. Growth, Vol. 221, 262 (2000).
    [23] S. Nakamura, Senoh M, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. Vol. 72, 211 (1998).
    [24] J. Z. Domagala, Z. R. Zytkiewicz, B. Beaumount, J. Kozlowski, R. Czernetzki, P. Prystawko, and M. Leszczynski, J. Cryst. Growth, Vol. 245, 37 (2002).
    [25] X. A. Cao, S. F. LeBoeuf, M. P. D'Evelyn, S. D. Arthur, J. Kretchmer, C. H. Yan, and Z. H. Yang, Appl. Phys. Lett. Vol. 84, 4313 (2004).
    [26] D. S. Wuu, H. W. Wu, S. T. Chen, T. Y. Tsai, X. Zheng, and R. H. Horng, J. Cryst. Growth, Vol. 311, 3063 (2009).
    [27] K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, J. Cryst. Growth, Vol. 115, 628 (1991).
    [28] A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, Jpn. J. Appl. Phys., Vol. 6, L889 (1997).
    [29] O. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, Appl. Phys. Lett., Vol. 71, 2638 (1997).
    [30] T. Mukai, K. Takekawa, and S. Nakamura, Jpn. J. Appl. Phys., Vol. 37, L839 (1998).
    [31] I. H. Kim, C. Sone, O. H. Nam, Y. J. Park, and T. Kim, Appl. Phys. Lett., Vol. 75, 4109 (1999).
    [32] S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, J. Cryst. Growth, Vol. 221, 334 (2000).
    [33] K. Linthicum, T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal, T. Smith D. Batchelor, and R. Davis, Appl. Phys. Lett., Vol. 75, 196 (1999).
    [34] I. H. Kim, C. Sone, O. H. Nam, Y. J. Park, and T. Kim, Appl. Phys. Lett., Vol. 75, 4109 (1999).
    [35] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett., Vol. 84, 855(2004).
    [36] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min, and S. J. Park, IEEE Photon. Tech. Lett., Vol. 18, 1512 (2006).
    [37] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai, and P. T. Wang, IEEE Electron. Devices Lett., Vol. 52, 2346 (2005).
    [38] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C.Ke, and J.K. Sheu, IEEE Photon. Technol. Lett., Vol. 16, 1002 (2004).
    [39] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, Jpn. J. Appl. Phys., Vol. 41, L1431 (2002).
    [40] D. S. Han, J. Y. Kim, S. I. Na, S. H. Kim, K. D. Lee, B. Kim, and S. J. Park, IEEE Photon. Technol. Lett., Vol. 18, 1406 (2006).
    [41] Bernard Gil, "Group III Nitride Semiconductor Compound", 33, Clarendon, Press, Oxford (1988).
    Advisor
  • Cheng-huang Kuo(F)
  • Files
  • 942406012.pdf
  • approve immediately
    Date of Submission 2010-07-20

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.