Title page for 942206030


[Back to Results | New Search]

Student Number 942206030
Author Zhao-Sheng Yu(余兆陞)
Author's Email Address ncuamudis@yahoo.com.tw
Statistics This thesis had been viewed 1901 times. Download 1358 times.
Department Optics and Photonics
Year 2007
Semester 1
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Fabrication of second-harmonic-generation waveguide in MgO:PPLN for blue laser generation
Date of Defense 2007-12-18
Page Count 56
Keyword
  • blue laser generation
  • MgO:PPLN
  • waveguide
  • Abstract A stable and efficient blue laser source has been one of the key elements used in biomedical, laser display, optical storage, and optical measurement systems. As an alternative to an attractive but not yet mature blue diode laser, in this work we try to develop a fabrication method of a quasi-phase-matching (QPM) second-harmonic generator in a low-loss optical-waveguide for achieving a high-efficiency blue laser based on a 5 mol. % MgO:LiNbO3 characterized by high optical nonlinearity and high optical damage resistance.
    We have studied using a series of annealed proton exchanged (APE) channel waveguides of widths 3.5 μm, 4 μm, 4.5 μm, and 5 μm and a depth 4 μm to establish a fabrication model of a 976-nm frequency doubled MgO:PPLN APE waveguide. With this model, we can deduce the QPM grating period for this waveguided frequency doubling process via the calculation of the effective refractive indices of the fundamental and second-harmonic waves. We also fabricated a qualified low-loss APE waveguide with a measured waveguide loss of ~0.15 dB/cm. Besides, in this work we have successfully implemented a 3rd order QPM grating period of ~14.8 μm in a MgO:LiNbO3 crystal for the 976-nm waveguided frequency doubling process. We are possible to fabricate these MgO:PPLN with a QPM grating of 50% duty cycle.
    We have also obtained some preliminary results on the study and fabrication of the soft proton exchanged (SPE) waveguides and 1st order QPM grating in a MgO:LiNbO3. We will discuss the improvement and practice schemes of these two advanced fabrication methods.
    Table of Content 論文摘要……………………………………………………………………….Ⅰ
    誌謝…………………………………………………………………………….Ⅳ
    目錄…………………………………………………………………………….Ⅴ
    圖目…………………………………………………………………………….Ⅶ
    表目…………………………………………………………………………….Ⅸ
    第一章  緒論
         1-1非線性光學波導簡介………………………………………….1
         1-2 研究動機………………………………………………………2
         1-3 內容概要………………………………………………………4
    第二章  理論
         2-1 波導中的耦合原理……………………………………………5
         2-2 準相位匹配技術………………………………………………7
    第三章  質子交換波導模型
         3-1質子交換波導簡介…………………………………………...10
         3-2退火式質子交換波導理論…………………………………...12
         3-3退火式波導模型建立………………………………………...14
    第四章 元件製程
         4-1週期性反轉結構製程………………………………………...17
         4-2 波導製作……………………………………………………..24
    第五章 結論與未來展望
         5-1 結論…………………………………………………………..36
         5-2 未來展望……………………………………………………..37
    參考文獻…………………………………………………………………….41
    Reference [1] S. E. Miller, ”Integrated Optics : an introduction,” Bell. Syst.Tech.J.,48,p2059-2069(1969)
    [2] M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, ”high-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser”, Appl. Phys. Lett.,83,p3659-3661(2003)
    [3] Zhenhuan Ye, Qihong Lou, Jingxing Dong, Yunrong Wei, and Lei Lun, “compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide cystals”, Opt. Lett., 30, p.73(2005).
    [4] D. A. Bryan, R. Gerson, and H. E. Tomasschke, “increased optical damage resistance in lithium niobate”, Appl. Phys. Lett.,44,p847-849(1984))
    [5] R. G. Batchko, G. D. Miller, A. Alexandrovski et al., ”Limitations of high-power visible wavelength periodically poled Lithium Niobate devices due to green-induced infrared absorption and thermal lensing,” Conf. on Laser and Electro-Optics, Presentation CTuD6(Opt. Soc. Am., Washington D.C.,1998)
    [6] Y. Furukawa, K. Kitamura, S. Takekawa, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett., 23, pp1892-1894(1998).
    [7] Masaki Asobe, Osamu Tadanaga, Tsutomu Yanagawa, Hiroki Itoh, and Hiroyuki Suzuki, ”Reducing photorefractivr effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett.,78,p3163-3165(2001)
    [8] Y. C. Huang, ”principles of nonlinear optics”, course reader, national Tsinghua university,Taiwan(2002)
    [9] Ming-Hsien Chou, “optical frequency mixers using three-wave mixing for optical fiber communications”(1999)
    [10] M. M. Fejer, et al., IEEE J. Quantum Electron. Vol.28,p.2631(1992)
    [11] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structural Properties,” IEEE J. Quantum Electronics.,vol.2,pp187-196(1996)
    [12] Vittorio M. N. Passaro,”LiNbO3 Optical Waveguides Formed in a New Proton Source,” J. Light. Tech.,vol.20,pp71-77(2002) 
    [13] Yu. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, and A. N. Alkaev “Proton-Exchanged Waveguides in MgO-doped LiNbO3: Optical and Structural Properties,” J. Appl. Phy.,vol.94,pp1163-1169(2003)
    [14] L. Chanvillard, P.Aschieri, and P. Baldi, ”Soft Proton Exchange on periodically poled LiNbO3 : A Simple Waveguide Fabrication Process for Highly Efficient Nonlinear Interactions,” Appl. Phy. Vol76, pp1089-1091(2000)
    [15] Yu. N. Korkishko, “LiNbO3 Optical Waveguide Fabrication by High-Temperature Proton Exchange,” J. Light. Tech.,vol.18,pp562-568(2000)
    [16] Yu. N. Korkishko, V. A. Fedorov, E. A. Baranov, M. V. Proyaeva, and T. V. Morozova, “Characterization of α-phase Soft Proton Exchanged LiNbO3 Optical Waveguides,” J. Opt. Soc. Am. A, vol.18,pp1186-1191(2001)
    [17] D. H. Tsou, M. H. Chou, P. Santhanaraghavan, Y. H. Chen, and Y. C. Haung, “Structure of Optical Characterization of Vapor-Phase Proton Exchanged LiNbO3 Waveguides,”Mater. Chem. And Phys.vol.78,pp474-479(2002)
    [18] L. Rams and J. M. Cabrera, “Preparation of proton-exchange LiNbO3 Waveguides in Benzoic Acid Vapor,” J. Opt. Soc. Am. B, vol.16, pp401-406(1999)
    [19]Yu. N. Korkishko, V. A. Fedorov, and T. M. Morozova, “Reverse Proton Exchange for Buried Waveguides in LiNbO3,” J. Opt. Soc. Am. B,vol.15,pp1838-1842(1998)
    [20] Sandeep T. Vohra, Alan R. Mickelson, and Sally E. Asher, ”diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides”, J. Appl. Phys. Vol.66,p.5161-5174(1989)
    [21] X. F. Cao et al., J. Light. Tech.,vol.10,pp1302(1992)
    [22] David E. Zelmon and David L. Small, ”Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5mol.% magnesium oxide-doped lithium niobate” J. Opt. Soc. Am. B,vol.14,pp3319-3322(1997)
    [23] http://www. yamatsu.com
    [24] D. A. Bryan, Robert Gerson, H. E. Tomaschke, ”Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.,44,p847-849(1984)
    [25] Y. Ishigame, T. Suhara, and H. Nishihara, ”LiNbO3 waveguide second-harmonic generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett., vol.16, p375-377(1991)
    [26] J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of Laser diode light in a lithium niobate channel waveguide,” IEEE Photon Techonol.Lett.,vol.1,p316-318(1989)
    [27] M. Yamada, N. Nada, M. Saitoh and K. Watanabe,”First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.,vol.62, p435-436(1993)
    [28] Alan. C. G. Nutt, Venkatraman Gopalan, and Mool C. Gupta,”Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett.,vol.60, p2828-2830(1992)
    [29] K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “electric-field poling in Mg-doped LiNbO3”, J. Appl. Phys.,vol.96,p6585-6590(2004)
    [30] G. D. Miller” Periodically poled lithium niobate : modeling,fabrication,and nonlinear-optical performance”
    [31] H.Ishizuki, I. Shoji, and T. Taira, ”Periodically poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.,vol.82, p4062-4064(2003)
    [32]黃俊育,”主動式多通道窄頻寬通Ti:PPLN波導濾波以及模態轉換器之研究”中央大學碩士論文,DOP(2006)
    [33] A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields” Appl. Phys. Lett.,vol.69,p1565-1567(1996)
    [34] M. L. Bortz, and M. M. Fejer, “annealed proton-exchanged LiNbO3 waveguides”, Opt. Lett., 16, p.1844-1846(1991).
    [35] R. Regener, and W. Sohler, ”loss in low-finesse Ti:LiNbO3 optical waveguide resonators ”, Appl. Phys. B,vol.36,p.143-147(1985)
    Advisor
  • Chen Yen-Hung(陳彥宏)
  • Files
  • 942206030.pdf
  • approve immediately
    Date of Submission 2007-12-28

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.