Title page for 93621012


[Back to Results | New Search]

Student Number 93621012
Author Chun-Chiang Kuo(郭俊江)
Author's Email Address 93621012@cc.ncu.edu.tw
Statistics This thesis had been viewed 2205 times. Download 826 times.
Department Graduate Institute of Atmospheric Physics
Year 2005
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title 光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化
Date of Defense 2006-07-10
Page Count 124
Keyword
  • Lidar
  • Sunphotometer
  • Abstract The purpose of this study is to characterize the aerosol optical properties measured by the sunphotometer and micro-pulse lidar in Chung-Li during the year of 2005. Combining with meteorological data, backward trajectories and ground level particle mass concentrations, this study also attempt to investigate the characterization of aerosol optical properties with respect to different seasons and weather conditions.
      The maximum and minimum values of monthly mean aerosol optical depths at 440 nm occurred in spring (0.814 ± 0.227) and winter (0.442 ± 0.227), respectively. The monthly mean of Ångström exponent varied between 1.051 and 1.259, indicating a relatively stable ratio of the columnar coarse to fine particle size. Moreover, it was found that the averaged aerosol optical depth was higher under the weather conditions B ( high pressure center in high latitude, and easterly wind in Taiwan ), R (outflow of high pressure system to Taiwan ), M (Southwesterly monsoon) and T2 ( the typhoon’s center located at the northwest side of Taiwan), and in a range between 0.68 and 0.82 . In contrast it was lower under the weather conditions C (cold-air outbreak) and T3 (the typhoon’s center located at the southwest side of Taiwan), with the value of 0.3 and 0.4, respectively.
      In addition, the aerosol particles within the boundary layer contributed about 57% of the columnar aerosol optical depth under the weather condition R. Relatively higher correlation coefficient between ground-level particle concentration and aerosol optical depth reveals that the former dominated the later in the lower troposphere.
    Table of Content 摘要 ............................................... Ι
    致謝 ............................................... III
    目錄 ............................................... IV
    表目錄 ............................................. VI
    圖目錄 .............................................. VII
    第一章前言 ............................................ 1
    1.1研究動機 ........................................ 2
    1.2研究目的 ........................................ 3
    第二章文獻回顧 ......................................... 4
      2.1 氣膠之輻射效應 ................................... 4
      2.2 氣膠光學垂直特性 ................................ 6
      2.3 定義邊界層頂 .................................... 8
      2.4 綜觀天氣分類之研究............................... 10
    第三章研究方法 ........................................ 12
      3.1 研究架構 ........................................ 12
      3.2 實驗時間與地點 .................................. 12
      3.3 實驗設備與觀測原理 .............................. 13
       3.3.1 太陽輻射儀 ...................................13
       3.3.2 微脈衝光達 ...................................15
      3.4 氣膠光學特徵參數 ................................16
       3.4.1 氣膠光學厚度 .................................16
       3.4.2 Ångström exponent ..............................17
      3.5 定義邊界層頂 ....................................18
      3.6 綜觀天氣分類.....................................19
    第四章結果與討論 ........................................................... 20
      4.1 中壢氣膠光學垂直特性與地面監測資料之分析 ............... 20
      4.2 中壢氣膠光學垂直特性之季節變化 ................................... 21
      4.3 中壢氣膠光學垂直特性在不同天氣型態下特性 ............... 24
      4.4 個案探討 ................................................. 27
    第五章結論與未來展望 ............................................ 34
      5.1 結論 ............................................................. 34
      5.2 未來展望 ............................................... 36
    參考文獻 ........................................................... 37
    附錄A
    Reference 王聖翔,2006:亞洲生質燃燒氣膠對區域環境與大氣輻射之衝擊及對氣象場的反饋作用。國立中央大學大氣物理研究所博士論文,中壢。
    江智偉,1999:偏振雷達對卷雲的量測。國立中央大學物理研究所碩士論 
      文,中壢。
    林和駿,2002:春季台灣地區懸浮微粒之短波輻射效應。國立台灣大學,大氣科學研究所碩士論文,台北。
    林和駿,林博雄及劉紹臣,2005:台灣南北城市氣膠光學厚度的特徵,中華民國國際氣膠科技研討會,203 – 212。
    林能暉、詹長權、黃景祥及江火明,1997:空氣品質嚴重惡化緊急防制辦法之檢討,EPA-86-FA44-09-47,行政院環境保護署。
    林能暉、黃景祥及彭啟明,2001:空氣品質異常偶發事件之認定及評估,EPA-90-FA11-03-90D014,行政院環境保護署。
    林能暉、劉振榮、李崇德及倪簡白,2004:”空氣污染物跨境傳輸對台灣地區空氣品質影響之研究:監測系統整合與分析應用”,EPA-93-U1L1-02-101,行政院環境保護署。
    胡婷堯,1996:桃園地區每日最大臭氧濃度之預測。國立中央大學,大氣物理研究所碩士論文,中壢。
    張時禹、詹長權、王家麟及劉遵賢,2004:台灣地區光化學污染物之行成、傳輸機制及其影響,EPA-93-FA11-03-A070,行政院環境保護署。
    陳進煌,1995:氣流軌跡模式在大氣污染物長程輸送上之運用。國立中央大學大氣物理研究所碩士論文,中壢。
    陳韡鼐、林博雄、陳自光、周崇光及陳正平,2006:Diurnal Cycle of Mixing Height Measured by Lidar,中華民國國際氣膠科技研討會。
    彭啟明,1994:台灣北部地區混合層高度的觀測與模擬。國立中央大學,大氣物理研究所碩士論文,中壢。
    Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2001, Reduction of tropical cloudiness by soot, Science, 288, 1042-1047.
    Berlyand, M. E., 1991:Prediction and regulation of air pollution, Kluwer Academic Publishers, Boston, 312 pp.
    Campbell, J.R., D.L. Hlavka, E.J. Welton, C.J. Flynn, D.D. Turner, J.D. Spinhirne, V.S. Scott, and I.H. Hwang, 2002, Full-time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instrument and Data Processing, J. Atmos. Oceanic Technol., 19, 431-442.
    Eck, T. F., B. N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H. B. Chen, B. Chatenet, L. Gomes, X.-Y. Zhang, S.-C. Tsay, Q. Ji, D. Giles, and I. Slutsker, 2005, Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J. Gerphys. Res., 110, D06202, doi:10.1029/2004JD005274.
    Flamant, C., J. Pelon, P. H. Flamant, and P. Durand, 1997, Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary-layer, Boundary-Layer Meteorol., 83, 247 – 284.
    Hansen, J., M. Sato, and R. Ruedy, 1997, Radiative forcing and climate response, J. Geophys. Res., 102(D6), 6831–6864.
    Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, 1998, AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66, 1-16.
    Intergovernmental Panel on Climate Change (IPCC), 2001, Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
    Lohmann, U., and M. Wild, 2005, Solar Dimming, Global Change NewsLetter, 63, 21-22. 
    Menut, L., C. Flamant, J. Pelon, and P. H. Flamant, 1999, Urban boundary-layer height determination from lidar measurements over the Paris area, Applied Optics, 38, 945 – 954.
    Ogunjobi, K. O., Z. He, K. W. Kim, and Y. J. Kim, 2004, Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea, Atmos. Environ., 38, 1313 – 1323.
    Sano, I., S. Mukai, Y. Okada, B. N. Holben, S. Ohta, and T. Takamura, 2003, Optical properties of aerosols durning APEX and ACE-Asia experiments, J. Gerphys. Res., 108, D23, doi:10.1029/2002JD00 3263.
    Sibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000, Review and intercomparison of operational methods for the determination of the mixing height, Atmos. Environ., 34, 1001 – 1027.
    Advisor
  • Neng-Huei Lin(林能暉)
  • Files
  • 93621012.pdf
  • approve immediately
    Date of Submission 2006-07-23

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.