Title page for 93533003


[Back to Results | New Search]

Student Number 93533003
Author Tzong-Lin Wu(吳宗霖)
Author's Email Address No Public.
Statistics This thesis had been viewed 1839 times. Download 5 times.
Department Executive Master of Communication Engineering
Year 2006
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Region weighted satellite super-resolution technology
Date of Defense 2007-07-06
Page Count 74
Keyword
  • region based weighting
  • satellite image
  • super-resolution
  • Abstract People always desire high resolution image. The reason is higher resolution image can be obtained more information. For example, high resolution satellite images include better classification to identify and analyze. Generally, resolution enhancement is usually completed by increasing density of sensors. However, the additional costs of equipment and design are quite high. Especially, high density satellite sensors must take a big risk. So we choose multiple images composing to develop efficient super-resolution method for achieving resolution enhancement.
    We use frequency model to realize super-resolution. Assumed motion of the low resolution satellite images are all on the same plane. Then, estimate rotation and shift in frequency domain. After estimation, we compensate motion and stick on the high resolution grid. Bicubic interpolation method is used to reconstruct high resolution images. Because of the computation cost, we develop a satellite image information parameters filtering to decrease the estimation and interpolation computation. The results show that our method can decrease computation and keep the reconstruction quality.
    Table of Content 中文摘要…………………………………………………………i
    英文摘要…………………………………………………………ii
    誌謝…………………………………………………………iv
    目錄…………………………………………………………v
    圖目錄…………………………………………………………viii
    表目錄…………………………………………………………viii
    第一章緒論……………………………………………………1
    1-1前言……………………………………………………1
    1-2研究動機………………………………………………2
    1-3論文架構………………………………………………3
    第二章超解析簡介與發展現況………………………………4
    2-1超解析功能與需求……………………………………4
    2-1-1解析度定義……………………………………………4
    2-1-2影像縮放………………………………………………7
    2-1-3超解析還原……………………………………………8
    2-2超解析發展現況………………………………………11
    2-2-1靜態影像超解析………………………………………11
    2-2-2動態視訊超解析………………………………………16
    第三章影像對位簡介與發展現況……………………………18
    3-1影像對位功能與需求簡介……………………………18
    3-1-1影像來源分類…………………………………………19
    3-1-2對位步驟………………………………………………20
    3-1-3特徵偵測………………………………………………23
    3-1-2特徵匹配………………………………………………27
    3-1-3轉換模型估測…………………………………………36
    3-1-4重新取樣與轉換………………………………………38
    3-2頻域對位技術之發展現況……………………………39
    第四章頻域對位超解析系統…………………………………42
    4-1頻域影像對位…………………………………………44
    4-1-1平面移動估測…………………………………………45
    4-1-1-1轉動估測………………………………………………46
    4-1-1-2平移估測………………………………………………48
    4-1-1-3混疊……………………………………………………48
    4-1-2影像重建………………………………………………50
    4-1-3Vandwalle系統總體概觀………………………………52
    4-2頻域超解析衛星影像系統……………………………53
    4-2-1衛星影像參數過濾……………………………………53
    4-2-1-1覆雲量參數……………………………………………54
    4-2-1-2區域參數………………………………………………56
    4-2-1-3空間頻率參數…………………………………………57
    第五章實驗結果與討論………………………………………60
    5-1對位準確性分析………………………………………61
    5-2影像重建品質分析……………………………………65
    5-3實際衛星影像測試……………………………………66
    第六章結論……………………………………………………70
    參考文獻………………………………………………71
    Reference [1] R. Y. Tsai and T. S. Huang, “Multiframe image restoration and registration,” in Advances in Computer Vision and Image Processsing, pp. 317–339. JAI Press Inc., 1984.
    [2] S. P. Kim, N. K. Bose, and H. M. Valenzuela, “Recursive reconstruction of high resolution image from noisy undersampled multiframes,” IEEE Trans. on Accoustics, Speech and Signal Processing, Vol. 18, no. 6, pp. 1013–1027, June 1990.
    [3] D. Keren, S. Peleg, and R. Brada, “Image sequence enhancement using sub-pixel displacements,” in Proc. of IEEE Conf. Computer Vision and Pattern Recognition, Ann Arbor, USA, pp. 742–746, 1988.
    [4] Wirawan, Pierre Duhamel, and Henri Maitre, “Multi-channel high resolution blind image restoration,” in Proc. of IEEE ICASSP, Arizona, USA, 1999, pp. 3229–3232.
    [5] H. Stark and P. Oskui, “High-resolution image recovery from image plane arrays using convex projections,” J. Optical Society of America, Vol. 6, no. 11, pp. 1715–1726, November 1989.
    [6] Didier Calle and Annick Montanvert, “Super-resolution inducing of an image,” in Proc. of IEEE Int. Conf. on Image Processing, Chicago, USA, pp. 742–746, 1998.
    [7] R. R. Schultz and R. L. Stevenson, “A Bayesian approach to image expansion for improved definition,” IEEE Trans. on Image Processing, Vol. 3, no. 3, pp. 233–242, May 1994.
    [8] P. Cheeseman, Bob Kanefsky, Richard Kraft, John Stutz, and Robin Hanson, “Super-resolved surface reconstruction from multiple images,” Tech. Rep. FIA-94-12, NASA Ames Research Center, Moffet Field, CA, December 1994.
    [9] R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta, Vol. 21, pp. 709–720, 1974.
    [10] Deepu Rajan, Some new approaches to generation of superresolution images, Ph.D. thesis, School of Biomedical Engineering, Indian Institute of Technology, Bombay, 2001.
    [11] Michal Irani and Shmuel Peleg, “Motion analysis for image enhancement : resolution, occlusion and transparency,” Journal of Visual Communication and Image Representation, Vol. 4, no. 4, pp. 324–335, December 1993.
    [12] B. Bascle, A. Blake, and A. Zissermann, “Motion deblurring and super-resolution from an image sequence,” in Proc. of European Conf. on Computer Vision, Cambridge, UK. Springer-Verlag, 1996.
    [13] R. R. Schultz and R. L. Stevenson, “Extraction of high-resolution frames from video sequences,” IEEE Trans. on Image Processing, Vol. 5, pp. 996–1011, June 1996.
    [14] Andrew J. Patti, M. Ibrahim Sezan, and A. Murat Tekalp, “Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time,” IEEE Trans. on Image Processing, Vol. 6, no. 8, pp. 1064–1076, August 1997.
    [15] N. R. Shah and Avideh Zakhor, “Resolution enhancement of color video sequences,” IEEE Trans. on Image Processing, Vol. 8, no. 6, pp. 879–885, June 1999.
    [16] L. G. Brown, “A survey of image registration techniques”, ACM Computing Surveys, Vol. 24, pp.326–376, 1992.
    [17] A. Goshtasby, Template matching in rotated images, IEEE Trans. Pattern Analysis and Machine Intelligence 7 (1985) 338–344.
    [18] H. Li, B. S. Manjunath, S. K. Mitra, A contour-based approach to multisensor image registration, IEEE Trans. Image Processing 4 (1995) 320–334.
    [19] D. P. Huttenlocher, G. A. Klanderman, W. J. Rucklidge, Comparing images using the Hausdorff distance, IEEE Trans. Pattern Analysis and Machine Intellinence 15 (1993) 850–863.
    [20] G. J. Vanderbrug, A. Rosenfeld, Two stage template matching, IEEE Trans. Computers 26 (1977) 384–393.
    [21] R. N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York, 1965.
    [22] E. de Castro, C. Morandi, Registration of translated and rotated images using finite Fourier transform, IEEE Trans. Pattern Analysis and Machine Intelligence 9 (1987) 700–703.
    [23] Q. Chen, M. Defrise, F. Deconinck, Symmetric phase-only matched filtering of Fourier-Mellin transform for image registration and recognition, IEEE Trans. Pattern Analysis and Machine Intellingence 16 (1994) 1156–1168.
    [24] E. H. Conrow, J. A. Ratkovic, Almost everything one needs to know about image matching systems, Proc. SPIE: Image Processing for Missile Guidance 238 (1980) 426–453.
    [25] P. Viola, W. M. Wells, Alignment by maximization of mutual information, Int’l. Journal of Computer Vision 24 (1997) 137–154.
    [26] P. Th’evenaz, M. Unser, An efficient mutual information optimizer for multiresolution image registration, Proc. IEEE Int’l. Conf. on Image Processing ICIP’98 (Chicago, Illinois, 1998) 833–837.
    [27] J. P. W. Pluim, J. B. A. Maintz, M. A. Viergever, Mutual information in multiresolution contexts, Proc. Int’l Workshop on Biomedical Image Registration WBIR’99 (Bled, Slovenia, 1999) 46–60.
    [28] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, D. J. Hawkes, A comparison of similarity measures for use in 2D–3D medical image registration, IEEE Trans. Medical Imaging 17 (1998) 586–595.
    [29] R. K. Sharma, M. Pavel, Multisensor image registration, Proc. Society for Information Display XXVIII (1997) 951–954.
    [30] R. Kumar, H. S. Sawhney, J. C. Asmuth, A. Pope, S. Hsu, Registration of video to geo-referenced imagery, Proc. Int’l. Conf. on Pattern Recognition ICPR’98 (Brisbane, Australia, 1998) 1393–1399.
    [31] J. P. Djamdji, A. Bajaoui, R. Maniere, Geometrical registration of images: The multiresolution approach, Photogrammetric Engineering and Remote Sensing 53 (1993) 645–653.
    [32] J. le Moigne, Parallel registratin of multi-sensor remotely sensed imagery using wavelet coefficients, Proc. SPIE: Wavelet Applications 2242 (Orlando, Florida, 1994) 432–443.
    [33] H. S. Stone, J. le Moigne, M. McGuire, The translation sensitivity of wavelet-based registration, IEEE Trans. Pattern Analysis and Machine Intelligence 21 (1999) 1074–1081.
    [34] O. Thepaut, K. Kpalma, J. Ronsin, Automatic registration of ERS and SPOT multisensor images in a data fusion context, Forest Ecology and Management 128 (2000) 93–100.
    [35] R. B. Huseby, O. M. Halck, R. Solberg, A model-based approach for geometrical correction of optical satellite images, Proc. Int’l. Geosci. Rem. Sensing Symp. IGARSS’99 (Hamburg, Germany, 1999) 330–332.
    [36] D. Shin, J. K. Pollard, J. P. Muller, Accurate geometric correction of ATSR images, IEEE Trans. Geoscience and Remote Sensing 35 (1997) 997–1006.
    [37] T. M. Lehman, C. Gornner, K. Spitzer, Survey: Interpolation methods in medical image processing, IEEE Trans. Medical Imaging 18 (1999) 1049–1075.
    [38] P. Th’evenaz, T. Blu, M. Unser, Interpolation revisited, IEEE Trans. on Medical Imaging 19 (2000) 739–758.
    [39] B. S. Reddy and B. N. Chatterji, “An FFT-based technique for translation, rotation, and scale-invariant image registration,” IEEE Transactions on Image Processing, Vol. 5, no. 8, pp. 1266–1271, 1996.
    [40] B. Marcel, M. Briot, and R. Murrieta, “Calcul de translation et rotation par la transformation de Fourier,” Traitement du Signal, Vol. 14, no. 2, pp. 135–149, 1997.
    [41] S. P. Kim and W.-Y. Su, “Subpixel accuracy image registration by spectrum cancellation,” in Proceedings of IEEE International Conference Acoustics, Speech, Signal Processing (ICASSP ’93), Vol. 5, pp. 153–156, Minneapolis, Minn, USA, April 1993.
    [42] H. S. Stone, M. T. Orchard, E.-C. Chang, and S. A. Martucci, “A fast direct Fourier-based algorithm for subpixel registration of images,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, no. 10, pp. 2235–2243, 2001.
    [43] P. Vandewalle, S. E. S¨usstrunk, and M. Vetterli, “Superresolution images reconstructed from aliased images,” in Proceedings of SPIE/IS&T Visual Communications and Image Processing Conference, T. Ebrahimi and T. Sikora, Eds., Vol. 5150 of Proceedings of SPIE, pp. 1398–1405, Lugano, Switzerland, 2003.
    [44] H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of phase correlation to subpixel registration,” IEEE Transactions on Image Processing, Vol. 11, no. 3, pp. 188–200, 2002.
    [45] L. Lucchese and G. M. Cortelazzo, “A noise-robust frequency domain technique for estimating planar roto-translations,” IEEE Transactions on Signal Processing, Vol. 48, no. 6, pp. 1769–1786, 2000.
    [46] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, “Hierarchical model-based motion estimation,” in Proceedings of 2nd European Conference on Computer Vision (ECCV
    ’92), Lecture Notes in Computer Science, pp. 237–252, Santa Margherita Ligure, Italy, May 1992.
    [47] M. Irani, B. Rousso, and S. Peleg, “Computing occluding and transparent motions,” International Journal of Computer Vision, Vol. 12, no. 1, pp. 5–16, 1994.
    [48] J. Gluckman, “Gradient field distributions for the registration of images,” in Proceedings of IEEE International Conference on Image Processing (ICIP ’03), Vol. 3, pp. 691–694, Barcelona, Spain, September 2003.
    [49] A. Zomet, A. Rav-Acha, and S. Peleg, “Robust superresolution,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’01), Vol. 1, pp. 645–650, Kauai, Hawaii, USA, December 2001.
    [50] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robustmultiframe super-resolution,” IEEE Transactions on Image Processing, Vol. 13, no. 10, pp. 1327–1344, 2004.
    [51] M. Elad and A. Feuer, “Restoration of a single super-resolution image from several blurred, noisy, and undersampled measured images,” IEEE Transactions on Image Processing, Vol. 6, no. 12, pp. 1646–1658, 1997.
    [52] P. Vandewalle, S. E. Süsstrunk, and M. Vetterli, “A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution,” EURASIP Journal on Applied Signal Processing, pp. 1–14, 2006.
    Advisor
  • Pao-Chi Chang(張寶基)
  • Files
  • 93533003.pdf
  • disapprove authorization
    Date of Submission 2007-07-24

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.