Title page for 93323109


[Back to Results | New Search]

Student Number 93323109
Author I-Tien Shueh(謝宜典)
Author's Email Address babya-no@yahoo.com.tw
Statistics This thesis had been viewed 2039 times. Download 1209 times.
Department Mechanical Engineering
Year 2005
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Element Free Galerkin Method
Date of Defense 2006-07-05
Page Count 46
Keyword
  • EFG
  • Meshfree
  • Meshless
  • MLS
  • Abstract An element-free Galerkin(EFG) method is introduced in this paper. It is an meshfree method. In this method, moving least-square interpolates are used to construct the approximate function for the Galerkin weak-form. EFG can overcome finite element method(FEM) several limitations in the engineering. For example, locking, large deformation problems accuracy losing, and crack growth problems. In this study, EFG is applied to elastostatics analysis. Path test, cantilevered beam, and plate with a central circular hole will be computed in this paper. Accuracy and convergence are also discussed in this paper. In addition, EFG method Fortran code also is offered in this paper. This Fortran code can be developed to meshfree application software or other meshfree method in the further.
    Table of Content 目  錄
       中文摘要................................................................... I
      英文摘要….............................................................. II
      圖目錄...................................................................... III
      表目錄...................................................................... IV
      目錄…...................................................................... V
    第一章 序論
      1.1 前言................................................................... 1
      1.2 文獻回顧........................................................... 1
      1.3 研究目的........................................................... 4
      1.3 本文架構........................................................... 5
    第二章 移動最小平方法
      2.1 前言................................................................... 6
      2.2 基本理論........................................................... 6
      2.2 權重函數........................................................... 10
    第三章 無網格葛勒金懲罰法
     3.1 前言................................................................... 12
     3.2 靜彈性力學公式............................................... 13
     3.3 葛勒金弱式懲罰法........................................... 13
     3.4 程式執行流程................................................... 18
    第四章 數值範例
      4.1 前言…............................................................... 19
      4.2 範例1:標準補丁測試.................................... 19
      4.3 範例2:懸臂梁................................................ 22
      4.4 範例3:中間挖有圓孔平板............................ 26
    第五章 結論與未來發展
      5.1 結論................................................................... 31
      5.2 未來發展........................................................... 31
    參考文獻.......................................................................... 32
    附錄.................................................................................. 34
    Reference 1.Lucy L. B. (1977) “A numerical approach to the testing of the fission     hypothesis,” The Astron. J, 8(12), pp. 1013-1024
    2.Nayroles B., Touzot G., Villon P. (1992) “Generalizing the finite element method: diffuse approximation and diffuse elements,” Comput. Mech, Vol. 10 pp. 307-318
    3.Belytschko T., Lu Y. Y. (1994) “Element free Galerkin method,” Int. J. Num. Meth, Vol. 37, pp. 229-256
    4.Chung H. J., Belytschko T. (1998) “An error estimate in the EFG method,” Comput. Mech, Vol. 21, pp. 91-100
    5.Dolbow J., Belytschko T. (1999) “Numerical integration of the Galerkin weak form in meshfree methods,” Comput. Mech, Vol. 23, pp. 219-230
    6.Belytschko T., Krongauz Y., Organ D., et al. (1996) “Smoothing and acclerated computions in the element free Galerkin method,” J. Comput. Appl. Math, Vol. 74, pp. 111-126
    7.Belytschko T., Lu Y. Y., Gu L. (1995) “Crack propagation by element-free Galerkin methods,” Frac. Mech, Vol. 51, pp. 295-315
    8.Rao B. N., Rahman S. (2000) “An efficient meshless method for fracture analysis of cracks,” Comput. Method, Vol. 26, pp. 398-408
    9.Onate E., Idelsohn S., Zienkiewicz O. C., et al. (1996) “A finite point method in computational mechanics: Applications to ocnvective transport and fluid flow,” Int. J. Num. Mech. Engng, Vol. 39, pp. 3839-3866
    10.Liu W. K., Jun S., Zhang Y. F. (1996) “Reproducing Kernel Particle methods,” Int. J. Num. Meth. Fluids, Vol. 20, pp. 1081-1106
    11.Lee S. H., Kim H. J., Jun S. (2000) “Two scale meshfree method for the adaptivity of 3-D stress concentration problems,” Comput. Mech, Vol. 26, pp. 376-387
    12.Jun S., Liu W. K., Belytschko T. (1998) “Explicit reproducing kernel particle methods for large deformation problems,” Int. J. Num. Meth. Engng, Vol. 41, pp. 137-166
    13.Zhu T., Zhang J., Atluri S. N. (1998) “A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach,” Comput. Mech, Vol. 21, pp. 223-235
    14.Atluri S. N., Zhu T. (1998) “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech, Vol. 22, pp. 117-127
    15.Liu G. R., Gu Y. T. (2000) “Meshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approachs,” Comput. Mech, Vol. 26, pp. 536-546
    16.Lancaster P., Salkauskas K. (1981) “Surfaces generated by moving least squares methods,” Math. Comput, Vol. 37, pp. 141-158
    17.Liu G. R. (2002) Mesh Free Method: Moving Beyond the Finite Element Method, CRC Press, New York
    18.Timoshenko S. P., Goodier J. N., (1970) ”Theory of Elasticity,” 3rd ed. McGraw-Hill, New York
    19.Liu G. R., Gu Y. T. (2005) An introduction to meshfree methods and their programming, Springer, Netherlands
    Advisor
  • Shu-Wei Wu(鄔蜀威)
  • Files
  • 93323109.pdf
  • approve immediately
    Date of Submission 2006-07-07

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.