Title page for 93323095


[Back to Results | New Search]

Student Number 93323095
Author Yu-Ta Shen(沈毓達)
Author's Email Address No Public.
Statistics This thesis had been viewed 896 times. Download 10 times.
Department Mechanical Engineering
Year 2009
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language English
Title Design and application for a pneumatic motor system
Date of Defense 2010-06-28
Page Count 109
Keyword
  • air motor
  • air pollution
  • model reference adaptive control
  • pneumatic hybrid motorcycle
  • robust sliding mode controller
  • Abstract Nowadays, air motors are widely used in the automation industry due to special requirements, such as spark-prohibited environments, the mining industry, chemical manufacturing plants, and so on. The purpose of this thesis is to analyze the behaviors of a vane-type air motor and to design a model reference adaptive control (MRAC) with a fuzzy friction compensation scheme for speed control. The behaviors of a ball screw table powered by a vane-type air motor are analyzed and a robust sliding mode controller is designed for position control. Currently in Taiwan, there are more than 13 million motorcycles, mostly driven by internal combustion engines (ICE). The pollutants, carbon monoxide (CO) and unburned hydrocarbons (HC), generated by motorcycles are account for more than 10% of the air pollutants released to the atmosphere every year. In order to improve the air pollution condition and eliminate the pollutants exhausting, this thesis also presents two new ideas of using compressed air as the power source for motorcycles. One idea is to equip a motorcycle with an air motor, which transforms the energy stored in the compressed air into mechanical energy. The other is to develop a hybrid pneumatic motorcycle, whose driving performance and the mileage are simulated. This pneumatic hybrid motorcycle can improve efficiency with an appropriate control strategy for driving operation.
    Table of Content 摘要………………………………………………………………..…………………………i
    Abstract……………………………………………………………………...……………ii
    誌謝…………………………………………………………………………….…………..iii
    Contents…………………………………………………………………………….……iv
    List of Figures……….………………………………………………………….v
    List of Tables…………………...………………………………….…………………….vii
    Chapter 1  Introduction…………………………………….………….…………1
      1.1 Background………………………………………………………………………1
      1.2 Motivation and Contribution…………………………………….…………5
      1.3 Organization of this thesis……………………………………….…………6
    Chapter 2 The components of air motor system………………………8
      2.1 ………………………………………………….…………8
      2.2 Air motor…………………………………………………….…………9
        2.2.1 Vane Motors………………………………………………….…………11
      2.3 Encoder……………………………………………………….…………14
        2.3.1 Incremental rotary encoder…………………………….…………14
        2.3.2 Optical linear encoder……………………………….…………16
      2.4 TMS320F240 DSP LH-069………………………………………………. 22
    2.5 DSP emulator…………………………………………………………………..…22
      2.6 Propotional control valve…………………….……………….…………24
    Chapter 3 Speed control of air motor system……………………...……………26
      3.1 Introduction………………………………………………………….…………26
      3.2 Air motor system for speed control………………………………………29
      3.3 Nonlinear behavior of air motor system…………………………………31
      3.4 Model reference adaptive controller design…………………………33
      3.5 Dead-zone Compensation Using Fuzzy Inference…….…….…………42
      3.6 Experiment results………………………………………………….…………46
    3.7 Conclusion………………………………………………..………….…………48
    Chapter 4 Position control of air motor system………………………………50
    4.1 Introduction……………………………………………..……….…………50
    4.2Air motor ball screw table system……………………………….…………51
    4.3 Robust sliding mode control for second-order uncertain systems …………………………………..……………….…………54
        4.3.1 Controller design…………………………..……………….……………54
    4.4 Experimental results………………………………………………….…………58
    4.5 Conclusion………………………………………………………….…………64
    Chapter 5 A air-powered motorcycle……………….…………………………65
    5.1 Introduction………………………………………………………….…………65
    5.2 Air-powered motorcycle system…………………………………………68
    5.3 Assembly and experiment for the air-powered motorcycle……………71
    5.4 Conclusion……………………………………………………………..…………76
    Chapter 6 A novel Pneumatic hybrid engine……………………………………77
    6.1 Introduction……………………………………………………….…………77
    6.2 Pneumatic hybrid engine concept…………………….……………………79
    6.2.1 Pumping charge……………………………………...………….…………81
    6.2.2 Motoring………………………………………………………….…………86
    6.3 Pneumatic hybrid motorcycle Modeling………………………….…………89
    6.4 Driving cycle………………………………………………...……….…………94
    6.5 Simulation and results…………………………………………….…………97
    6.6 Conclusion………………………………………………...………….…………102
    Chapter 7 Conclusions…………………………………………………….………104
    References……………………………………………….…………………….…………105
    學術文章與經歷…………………………………………………………………………108
    List of Figures
    Fig. 1-1 Pneumatic hammer………………………………………………….…………2
    Fig. 1-2 Pneumatic cylinder………………………………………………….…………3
    Fig.2-1 Vane-type air motor………..……………………………………………….……9
    Fig. 2-2 Three different design schemes for vane motors: 3 port reversible motor using internal energy(Left), 2 port non-reversible motor(middle), 2 port reversible motor without expansion(right)………..…………………….…………11
    Fig. 2-3 Arrangement of reversible vane motor………...…………………………13
    Fig. 2-4 Cut-away view and air flow……………………………………….…………13
    Fig.2-5 Incremental optical rotary encoder……………………………….…………15
    Fig.2-6 Optical linear encoder……………………………………………….…………16
    Fig.2-7 TMS320F240 CUP top view………………………….………………………18
    Fig.2-8 TMS320F240 function block diagram……….………………….…………19
    Fig.2-9 DSP LH-069………………………………………………………….…………20
    Fig.2-10 DSP simulator…………..………………………………………….…………23
    Fig.2-11 (a) proportional directional control valves (b) proportional pressure control valves……………………………..……………………………………..…………25
    Fig. 3-1 Schematic diagram of the air motor system…………………………30
    Fig.3-2 Experimental air motor system……………………………….…………30
    Fig.3-3 The static relationship between the applied voltage and rotational speed (the input frequencies in Fig.3-3-a,b,c are 0.2 Hz,0.4 Hz and 0.8 Hz, respectively. Fig.3-3-d is dead-zone model)…….………………………………………….…………32
    Fig. 3-4, Air motor inner structure………….…………………………….…………33
    Fig. 3-5 MRAC without friction compensation…………………...….…………39
    Fig. 3-6 MRAC with friction compensation……………….………….…………40
    Fig. 3-7 MRAC with friction compensation, , Ks is too small to eliminate dead-zone.……………………………………………………………...……40
    Fig. 3-8 MRAC with friction compensation, ,Ks is too small to eliminate dead-zone.……………………………………………….…………41
    Fig. 3-9 MRAC with friction compensation, ,Ks is enough to eliminate dead-zone.………………………………………………………….…………41
    Fig. 3-10 MRAC with friction compensation, ,Ks is enough to eliminate dead-zone.……………………………………………………….…………42
    Fig. 3-11 Block diagram of speed control using dead-zone compensation with fuzzy rules and MRAC controller……………………...………………….…………44
    Fig.3-12 The membership of error(Fig. 3-12-1) and speed(Fig. 3-12-2) ……45
    Fig. 3-13 MRAC with fuzzy friction compensation.……47
    Fig. 3-14 MRAC with fuzzy friction compensation………48
    Fig. 4-1 Schematic diagram of the air motor system………………………..……53
    Fig.4-2 Photograph of the experimental air motor system………………….…53
    Fig.4-3 The position responses with different output voltage…………………54
    Fig.4-4 Position control for 10 mm and 20 mm………………..………………60
    Fig.4-5 S ( ) function for 10 and 20 mm…………..…………………60
    Fig.4-6 Control voltage for 10 and 20 mm…………………………….…………61
    Fig.4-7 Tracking sinusoidal wave result……….…..…………………….…………61
    Fig. 4-8 Tracking error………………………………….…………………….…………62
    Fig.4-9 Two steps position control result……………………………….…………62
    Fig.4-10 Two steps position control voltage…………………………….…………63
    Fig.4-11 Tracking sinusoidal wave result under loading mass 5 kg…………63
    Fig.4-12 Tracking error……………………………………………………….…………64
    Fig.5-1 Schematic diagram of air-powered motorcycle………………………68
    Fig. 5-2 The chain connects air motor with rear tire………………….…………73
    Fig. 5-3 The practical riding test………………………………………………..……74
    Fig. 5-4 The velocity of air-powered motorcycle…………………………………74
    Fig. 5-5 The efficiency of air dynamic motorcycle, y is a function of polynomial asymptotic curve……...................…………………………….…………75
    Fig 5-6. (a) The different pressure from inlet to outlet of air dynamic motorcycle. (b) The air flow of air dynamic motorcycle. y is a function of polynomial asymptotic curve………………………..……………………………………….…………75
    Fig. 6-1 The concept of pneumatic hybrid engine……………………….…………79
    Fig. 6-2 P-V diagram of pneumatic pump operation…………………….…………81
    Fig. 6-3 Air compression pumping……..………………………..………….…………83
    Fig. 6-4 P-V diagram of pneumatic motoring cycle…………………………..……86
    Fig. 6-5 The cylinder pressure of pneumatic motoring with different tank size..88
    Fig. 6-6 The force acting on a motorcycle moving along a slope………….……93
    Fig. 6-7 Brake specific fuel consumption of a 125 cc four-stroke engine…….94
    Fig. 6-8 Modified UDDC Driving Cycle………………………..……………………95
    Fig. 6-9 NYCC Driving Cycle……………………………………………….…………96
    Fig. 6-10 ECE-15 Driving Cycle………………………………..………………………96
    Fig. 6-11 Flow chart of control strategy……………….………………………………99
    Fig. 6-12 Pneumatic hybrid engine driving result with modified UDDC….….100
    Fig. 6-13 Pneumatic hybrid engine driving result with NYCC……………..…101
    Fig. 6-14 Pneumatic hybrid engine driving result with ECE-15…….…………101
    List of Tables
    Table 2-1 DAC address………..…………………………….…………………21
    Table 2-2 Relationship between digital data and pole switch selection…...…21
    Table 5-1 The major elements of air-powered motorcycle……….…….………69
    Table 6-1 Calculation for pumping charge………………………………....…83
    Table 6-2 Normal driver comparison of difference driving cycle………….…99
    Table 6-3 Heavy driver comparison of difference driving cycle……….…..…100
    Reference [1].Richardson, R., Brown, M., Bhakta, B., Levesley, M., Impedance control for a pneumatic robot-based around pole-placement, joint space controllers, Control Engineering Practice, vol. 13, issue 3, March, 2005, pp. 291-303.
    [2].Wang, J.,Pu J. and Moore P.,A practical control strategy for servo-pneumatic actuator systems,Control Engineering Practice,vol.7,pp.1483-1488,1999.
    [3].Pandian, S.R., Takemura, F., Hayakawa, Y., Kawamura,S., Control performance of an air motor-can air motors replace electric motors?, IEEE International Conference on, vol. 1, pp. 518–524, 1999.
    [4].Tokhi, M.O., Al-Miskiry, M., Brisland, M., Real-time control of air motors using a pneumatic H-bridge, Control Engineering Practice, vol. 9, issue 4, pp. 449-457, April, 2001.
    [5].Pu, J., Wong, C.B., Moore, P. R., An investigation into the profile following capability of servo-controlled air motors, Proc 4th Scandinavian Int Conf on Fluid Power, Tampere, Finland, pp 545–555,1995.
    [6].Barber A (1997) Pneumatic Handbook. 8th edn. Elsevier Advanced Technology, Oxford.
    [7].Zhang, Y. and Nishi, A., Low-pressure air motor for wall-climbing robot actuation, Mechatronics,vol. 13,no.4,pp. 377-392,2003.
    [8].Pu, J., Moore, P.R., Weston, R.H., Digital servo motion control of air motors, International Journal of Production Research, vol. 29, no 3, pp. 599-618, 1991.
    [9].Wang, J., Pu, J., Moore, P.R., Modelling study and servo-control of air motor systems, International Journal of Control, vol. 71, no. 3, pp. 459- 476, 1998.
    [10].Wang, J., Pu, J., Wong, C.B., Moore. P.R., Robust Servo Motion Control of Air Motor Systems, UKACC International Conference on Control, vol. 1, pp.90-95, 1996.
    [11].Marumo, R., Tokhi, M.O., Neural-model reference control of an air motor, 7th AFRICON Conference in Africa, Vol. 1, pp.467-472, 2004.
    [12].Wang, X.-S., Hong, H., Su, C.Y., Model reference adaptive control of continuous-time systems with an unknown input dead-zone, Control Theory and Applications, IEE Proceedings, vol. 150, no 3, PP.261 – 266, 2003.
    [13].Senjyu, T., Kashiwagi, T., Uezato, K., Position control of ultrasonic motors using MRAC and dead-zone compensation with fuzzy inference, Power Electronics, IEEE Transactions ,vol. 17, no 2, pp. 265 – 272, March 2002.
    [14].Senjyu, T., Kashiwagi, T., Uezato, K., Position control of ultrasonic motors using MRAC with dead-zone compensation, Power Electronics, IEEE Transactions, vol. 48, no 6, pp.1278 – 1285, 2001.
    [15].Zhou, D., Shen, T.L., Tamura, K., Nakazawa, T., Henmi, N., Adaptive control of a pneumatic valve with unknown parameters and disturbances, SICE 2003 Annual Conference, vol. 3, pp.2703 – 2707, 2003.
    [16].Hwang, Y.R. and Tomizuka, M., Fuzzy Smoothing Algorithms for Variable Structure Systems, IEEE Transactions on Fuzzy Systems, vol. 2, no. 4, 1994.
    [17].Lee, C.C., Fuzzy Logic in Control System: Fuzzy Logic Controller-Part I & II, IEEE Transactions on Syst., Man., Cybern., vol. 20, no. 2, pp. 404-435, 1990.
    [18].Mizumoto, M., Fuzzy Reasoning and Fuzzy Control, Computol, vol. 28, pp. 32-45, 1989.
    [19].Zadeh, L.A., Fuzzy Sets, Information and Control, vol. 8, pp. 338-353, 1965.
    [20].Ng, H. W., and Alleyne, A., Modeling and bumpless learning control of position and pressure for an electropneumatic actuator, Proc Fluid Power Systems & Technology 2000, pp. 7–8, 2000.
    [21].Song, J. and Ishida, Y., A robust sliding mode control for pneumatic servo systems, Int. J. Eng. Sci. vol.35,no.8,pp.711-723,1997.
    [22].Šitum,Ž., Žilić, T. and Essert, M., High speed solenoid valves in pneumatic servo applications, 2007 Mediterranean Conf on Control and Automation, pp. 1-6,2007.
    [23].Nguyen, T., Leavitt, J., Jabbari, F. and Bobrow, J.E., Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves, IEEE/ASME Trans on Mechatronics, vol.12,no.2, pp. 216–219,2007.
    [24].Shin, M.C. and Lu, C.S., Fuzzy sliding mode position control of a ball screw driven by pneumatic servomotor, Mechatronics. vol. 5,no.4,pp. 421-431,1995.
    [25].Taiwan EPA, 2007. http://www.epa.gov.tw/
    [26].Wang, J.H, Chiang, W.L, Shu, J.P.H, The prospects: fuel-cell motorcycles in Taiwan, Journal of Power Sources, vol.86,no.1-2,pp.151–157, 2000.
    [27].Lin, B., Conceptual design and modeling of a fuel-cell scooter for urban Asia, Journal of Power Sources ,vol.86,no.1-2,pp. 202–213,2000.
    [28].Tso, C. and Chang, S.Y, A viable niche market: fuel-cell scooters in Taiwan, Int. J. Hydrogen Energy,vol.28,no.7,pp.757–762,2003.
    [29].Sheu, K.B and Hsu, T.H, Design and implementation of a novel hybrid-electric-motorcycle transmission, Applied Energy, vol.83, no.9,pp.959–974, 2006.
    [30].Sheu, K.B, Analysis and evaluation of hybrid scooter transmission systems, Applied Energy,vol.84,no.12, pp.1289-1304, 2007.
    [31].Huang, K.D and Tzeng, S.C, A new parallel-type hybrid electric-vehicle, Applied Energy,vol.79,no.1,pp.51-64,2004.
    [32].Huang, K.D., Tzeng, S.C and Chang, W.C, Development of a hybrid pneumatic-power vehicle, Applied Energy,vol.80,no.1, pp.47-59,2005.
    [33].Huang, K.D, Tzeng SC, Ma, W.P and Chang, W.C, Hybrid pneumatic-power system which recycles exhaust gas of an internal-combustion engine, Applied Energy, vol.82,no.2, pp.117-132,2005.
    [34].Chiu, Y.C and Tzeng, G.H, The market acceptance of electric motorcycles in Taiwan experience through a stated preference analysis, Transportation Research Part D, vol.4, no.2, pp.127-146,1999.
    [35].Moteur Development International (MDI). http://www. mdi.lu/english/
    [36].Huang, K.D , Tzeng, S.C and Chang, W.C, Energy-saving hybrid vehicle using a pneumatic-power system, Applied Energy, vol. 81, no.1, pp.1-18,2005.
    [37].Larminie, J. and Lowry, J., Electric Vehicle Technology Explained, John Wiley Sons, 2003.
    Advisor
  • Yean-Ren Hwang(黃衍任)
  • Files
  • 93323095.pdf
  • disapprove authorization
    Date of Submission 2010-07-13

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.