Title page for 93236003


[Back to Results | New Search]

Student Number 93236003
Author Te-Feng Kao(高得峰)
Author's Email Address No Public.
Statistics This thesis had been viewed 2139 times. Download 1243 times.
Department Executive Master of Optics and Photonics
Year 2006
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title The study of new photonic filter
Date of Defense 2007-06-28
Page Count 56
Keyword
  • filter
  • photonic
  • waveguide
  • Abstract In this thesis we study the problem of how to design a wideband band-pass filter by using waveguide-defect coupling mechanism. The filter consists of a photonic crystal waveguide and several point defects. By observing the transmission-frequency curves of various configurations , we can modify the structure and finally find the optimized design of the filter.
    The analytic procedure is as follows:
    1.Using plane-wave expansion method to determine the photonic crystal structure’s band gap, which is the working frequency region for the defects and the waveguide.
    2.Using multiple scattering method to determine the field pattern and transmission-frequency diagram for photonic structures with defects. We can calculate the cavity’s Q factor according to transmission-frequency diagram.
    3.Finally, we analyze the simulation results of field patterns, the transmission-frequency diagram, and the relations between the defect sizes and transmission-frequency diagram and cavity’s Q factor to find the optimal design.
    Basically, we follow the “Plan-Do-Check-Act” PDCA cycle to contineously improve the performance of the photonic band-pass filter.
    Table of Content 摘要 …………………………………………………………….Ⅰ
    誌謝 …………………………………………………………….Ⅲ
    目錄 ………………………………………………………….. Ⅳ
    圖目錄 ………………………………………………………. VI
    表目錄 ………………………………………………………. IX
    第一章 序論
    1-1何謂光子晶體 ………………………………………………..1
    1-2光子晶體能隙 ……………………………………………….2
    1-3光子晶體缺陷 ……………………………………………….2
    1-4光子晶體波導………………………………………………….3
    第二章 理論分析 ……………………………………………….5
    2-1帶隙(Band Gap)形成原因及對於光子晶體的應用 ………6
     2-1-1 帶隙形成原因 …………………………………………6
     2-1-2帶隙對於光子晶體關係 ……………………………….8
    2-2平面波展開法的理論基礎 ………………………………….9
    2-3多重散射法的理論基礎 ……………………………………14
    2-4光子晶體能流及穿透率值計算 ……………………………21
    第三章 光子晶體波導及濾波功能研究 ……………………24
    3-1 分析流程 ………………………………………………..24
    3-2 各結構導入分析 ………………………………………..27
     3-2-1 line defect 導入(waveguide) ………………...27
     3-2-2 參考論文光子晶體結構導入 ………………………28
     3-2-3 line defect (waveguide) + one missing hole ……31
     3-2-4 line defect (waveguide) + three missing holes …32
     3-2-5 frequency filter by missing rods ……………….35
     3-2-6 frequency filter by shifting rods ……………….39
    3-3 不同共振腔間的結合 ……………………………………….41
    3-4偏移圓柱半徑及結合其共振腔所形成之濾波器 ………….45
     3-4-1導入缺陷的影響 ………………………………………..47
     3-4-2改變共振腔間距的影響 ………………………………..48
    3-5 總整頻帶濾波器的設計 …………………………………….50
    第四章 結論及未來展望
    4-1對於模擬中能流截取選擇的結論 ……………………………51
    4-2結合不同光子晶體結構來拓寬頻帶方式的結論 ……………51
    4-3採用光子晶體結構中改變圓柱半徑後再結合不同共振腔方式來拓寬頻帶方式的結論…………………………………………………51
    4-4 PDCA cycle …………………………………………………52
    4-5 未來展望 ……………………………………………………53
    參考資料 ……………………………………………………… 54~56
    Reference [1] 李正中, “ 自然界與科技領域中的光學薄膜 - 從色彩顯示談起 ” 科儀新知 , 第二十五卷 , (2004), pp. 6-13
    [2]E. Yablonovith, “Inhhibited Spontaneous Emission in Solid-State Physics and Electronics” Phys. Rev. Lett. 58,2059(1987)
    [3]S. John, “Strong localization of photons in certain disordered dielectric superlattices” 58,2486(1987)
    [4]Yoel Fink, Joshua N. Winn, Shanhui Fan, Chiping Chen, Jurgen Michel, John D. Joannopoulos, Edwin L.Thomas*, “A Dielectric Omnidirectional Reflector”
    [5] ”Microcavities in photonic crystals: Mode symmetry, tenability, and coupling efficiency” VOLUME54, NUMBER11 / PHYSICAL REVIEW B
    [6] “Coupling characteristics of localized photons in two-dimensional photonic crystals” PHYSICAL REVIEW B 67, 073103 (2003)
    [7] “Waveguides, resonators and their coupled elements in photonic crystal slabs” 19 April 2004 / Vol. 12, No. 8 / OPTICLA EXPRESS 
    [8] “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals” PHYSICAL REVIEW B, VOLUME 64, 155113
    [9] “Ministop bands in single-defect photonic crystal waveguides” PHYSICAL REVIEW E, VOLUME 64, 055603(R)
    [10] “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal” PHYSICAL REVIEW B, VOLUME 63, 113311(2001)
    [11]”Coupled-resonator optical waveguide: a proposal and analysis “ June 1,1999/Vol. 24, No.11/OPTICAL LETTERS
    [12] “Mach-Zehnder interferometer employing coupled-resonator optical waveguides” March 15, 2003 / Vol. 28, No. 6 / OPTICLAL LETTERS
    [13] “Experimental Results on Adiabatic Coupling Into SOI Photonical Crystal Coupled-Cavity Waveguides” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.17, NO. 6, JUNE 2005
    [14] “Microring Resonator Channel Dropping Filters” JPURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 15, NO. 6, JUNE 1997
    [15] “Channel Drop Tunneling through Localized States” PHYSICS REVIEW LETTERTS VOLUME 80, Number 5, 2 February 1998
    [16] “Channel drop filters in photonic crystal” 6 July 1998 / Vol. 3, No. 1 / OPTICAL EXPRESS
    [17] “Theoretical analysis of channel drop tunneling process” PHYSICAL REVIEW B / VOLUME 59, NUMBER 24 / 15 JUNE 1999
    [18] Pi-Gang Luan and Zhen Ye, Two dimensional photonic crystals, preprint,http://140.115.40.128/publication/P03.pdf (July 10, 2004)
    [19] Bikash C. Gupta, Chao-Hsien Kuo, and Zhen Ye, Propafation inhivition and localization of electromagnetic waves in two dimensional random dielectric systems, Phys. Rec. E69, 066615(2004)
    [20] 欒丕綱&陳啟昌,光子晶體(從蝴蝶翅膀到奈米光子學).五南出版社,台灣,2005.
    [21] G. R. Fowles, Introduction to modern optics, Dover Publications,2nd Ed.,1989
    [22] “Introduction to Solid State Physics” Charles Kittel 8th edition
    [23] L. S. Chen, C. H. Kuo, Z. Ye, “Acoustic miaging and collimating by slabs of sonic crystals made from arrays of rigid cylinders in air”, Applied Physics Letters, (2004)
    [24] George B. Arfken, Hans J. Weber, “Mathematical Methods for physicists”, ACADEMIC, (1966)
    [25] “Band-dropping via coupled photonic crystal waveguides” 4 November / Vol. 10, No.22 / OPTICS EXPRESS
    [26] “光子晶體簡介” 光學工程第九十五期
    [27] “A Dispersion Compensator Using Coupled Defects in a Photonic Crystal” IEEE J. Quantum Electron. 38, 825(2002)
    [28] “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency” PHYSICAL REVIEW B VOLUME 54, NUMBER11(1996)
    [29] “Coupling characteristics of localized photons in two-dimensional photonic crystals” PHYSICAL REVIEW B 67, 073103 (2003)
    [30] “Higher Order Optical Resonant Filters Based on Coupled Defect Resonators in Photonic Crystals” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 5, MAY 2005
    [31] “Tunable Study of Frequency Selective Filter Based on Photonic Crystal” Progress In Electromagnetics Research Symposium 2005
    Advisor
  • Pi-Gang Luan(欒丕綱)
  • Files
  • 93236003.pdf
  • approve immediately
    Date of Submission 2007-07-05

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.